

HS009353116B2

(12) United States Patent

Garske et al.

(10) Patent No.: US 9,353,116 B2 (45) Date of Patent: May 31, 2016

(54) METHODS AND COMPOSITIONS FOR KINASE INHIBITION

(71) Applicant: THE REGENTS OF THE

UNIVERSITY OF CALIFORNIA,

Oakland, CA (US)

(72) Inventors: Adam L. Garske, San Francisco, CA

(US); Kevan M. Shokat, San Francisco,

CA (US)

(73) Assignee: The Regents of the University of

California, Oakland, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 13/690,785

(22) Filed: Nov. 30, 2012

(65) Prior Publication Data

US 2013/0137708 A1 May 30, 2013

Related U.S. Application Data

- (63) Continuation of application No. PCT/US2011/039347, filed on Jun. 6, 2011.
- (60) Provisional application No. 61/351,663, filed on Jun. 4, 2010.

(51)	Int. Cl.	
	C12N 9/12	(2006.01)
	C12N 9/99	(2006.01)
	C07D 487/04	(2006.01)
	C07D 239/94	(2006.01)
	C07D 403/12	(2006.01)
	C07D 409/12	(2006.01)
	A01N 43/90	(2006.01)

(52) U.S. Cl.

A61K 31/519

(2006.01)

(58) Field of Classification Search

None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,643,734	A	7/1997	Henderson
6,589,950	В1	7/2003	Hayler et al.
7,271,262	B2	9/2007	La Greca et al.
7,332,497	B2	2/2008	Hirst et al.
7,585,868	B2	9/2009	Knight et al.
8,642,604	B2	2/2014	Knight et al.
2003/0187001	A1	10/2003	Calderwood et al.
2005/0085472	A1	4/2005	Tanaka et al.
2006/0035912	A1	2/2006	Marx et al.
2007/0293489	A1	12/2007	Adams et al.
2009/0029989	$\mathbf{A}1$	1/2009	Adams et al.
2009/0124638	A1	5/2009	Shokat et al.
2009/0181988	A1	7/2009	Tanaka et al.

2009/0221614 A1	9/2009	Taunton et al.
2011/0144134 A1	6/2011	Shokat et al.
2011/0224223 A1	9/2011	Shokat et al.
2011/0275611 A1*	11/2011	Axten et al 514/210.21
2011/0275651 A1	11/2011	Dar et al.
2012/0065154 A1	3/2012	Tanaka et al.
2014/0243357 A1	8/2014	Dar et al.
2015/0031881 A1	1/2015	Tanaka et al.
2016/0000789 A1	1/2016	Shokat et al.

OTHER PUBLICATIONS

Chapman et al. (Bioorganic & Medicinal Chemistry Letters, Dec. 7, 2008, 19, 811-813).*

Chapman et al. Supplemental content.*

Ito et al. (Cancer Science, 2003, 94, 3-8).*

Aspel et al. (Nature Chemical Biology, 6, 2008, 691-699).*

Aspel et al. (Nature Chemical Biology, 6, 2008, Supplemental content).*

J. G. Cannon Chapter Nineteen in Burger's Medicinal Chemistry and Drug Discovery, Fifth Edition, vol. I: Principles and Practice, Wiley-Interscience 1995, pp. 783-802, 784.*

Azam et al., "Activation of tyrosine kinases by mutation of the gatekeeper threonine," Nat Struct Mol Biol, 15(10): 1109-18 (2008). Cameron et al., "PKC Maturation is promoted by nucleotide pocket occupation independently of intrinsic kinase activity," Nat Struct Mol Biol, 16(6): 624-31 (2009).

Chapman et al., "A small molecule inhibitor selective for a variant ATP-binding site of the chaperonin GroEL," Bioorganic & Medicinal Chemistry Letters, 19: 811-813 (2009).

Elphick et al, "Using chemical genetics and ATP analogues to dissect protein kinase function," ACS Chemical Biology, 2: 299-314 (2007). Hatzivassililou et al., "RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth," Nature, 464(7287): 431-5 (2010).

Hindie et al., "Structure and allosteric effects of low-molecular-weight activators on the protein kinase PDK1," Nat Chem Biol, 5(10): 758-64 (2009).

Liu et al., "Structural basis for selective inhibition of Src family kinases by PP1," Chemistry & Biology, 6:671-678 (1999).

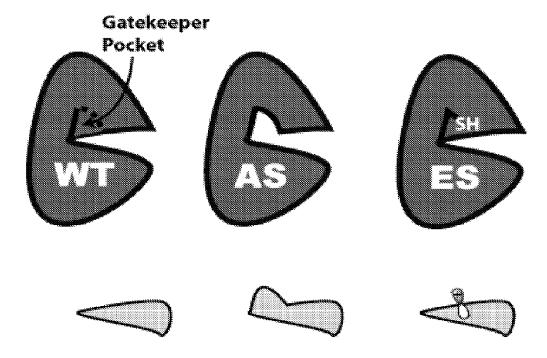
No Author, Upstate KinaseProfiler Assay Protocols, Jun. 2003 publication.

Okuzumi et al., "Inhibitor Hijacking of Akt Activation," Nat Chem Biol, 5(7): 484-93 (2009).

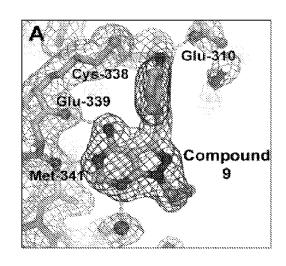
Zunder et al., "Discovery of drug-resistant and drug-sensitizing mutations in the oncogenic PI3K isoform p110 alpha," Cancer Cell, 14(2): 180-92 (2008).

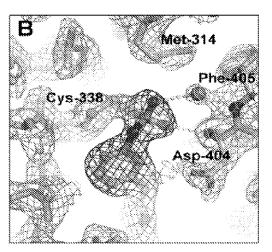
International Search Report and Written Opinion mailed Feb. 3, 2012 in related International Patent Application No. PCT/US2011/039347, filed Jun. 6, 2011, 11 pages.

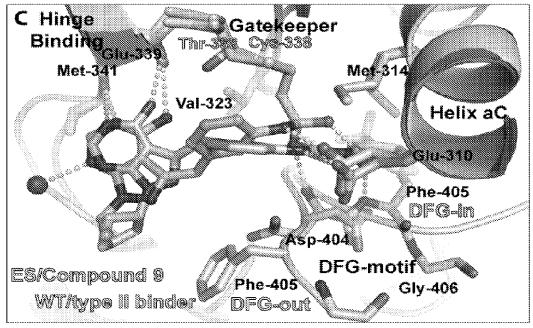
* cited by examiner

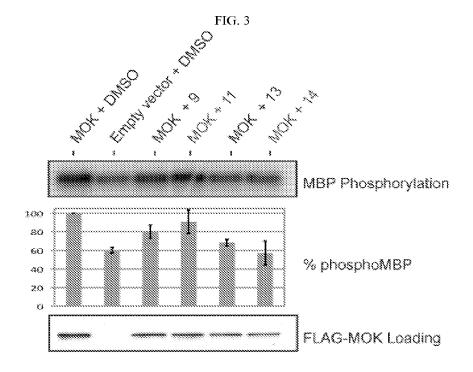

Primary Examiner — Dennis Heyer Assistant Examiner — Daniel M Podgorski (74) Attorney, Agent, or Firm — Mintz Levin Cohn Ferris Glovsky and Popeo, P.C.

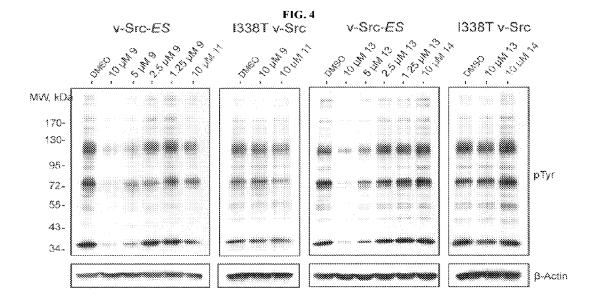
(57) ABSTRACT


The present invention sets forth a new chemical genetic approach for engineering kinase enzymes with a cysteine gatekeeper residue as well as for developing electrophilic inhibitors thereto. The present invention also provides a Src proto-oncogenic tyrosine kinase with a cysteine gatekeeper that recapitulates wild type activity and can be irreversibly inhibited both in vitro and in cells. The present invention also provides methods and compositions for modulating kinases and for treating kinase-associate diseases.


12 Claims, 22 Drawing Sheets


FIG. 1

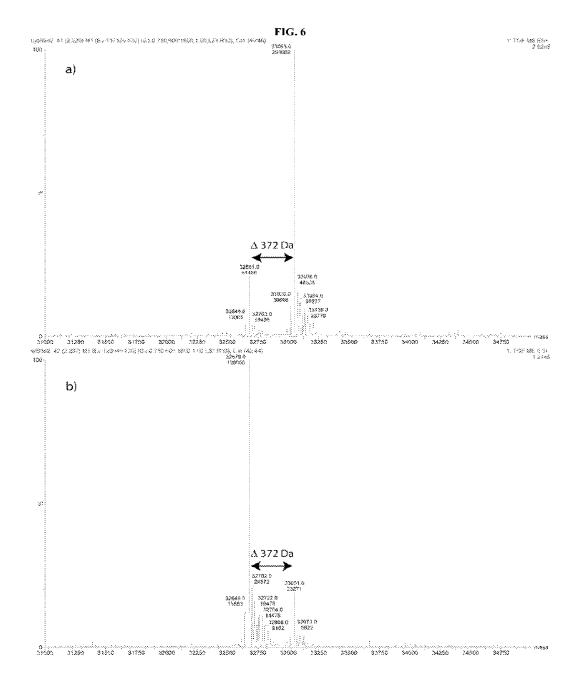


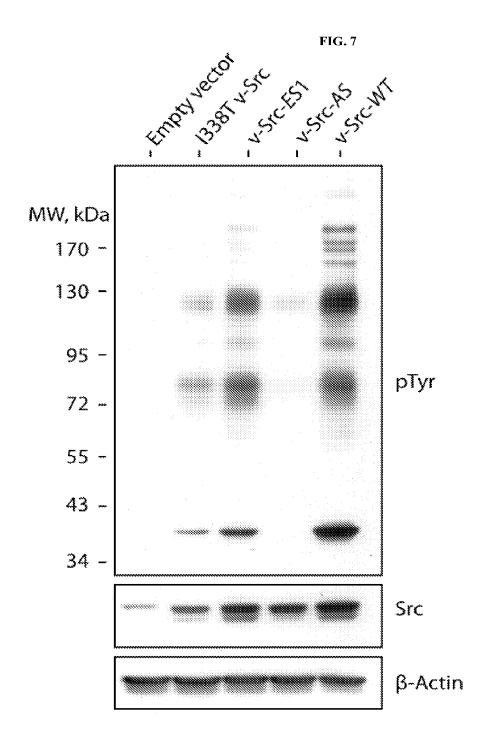

FIG. 2

0.25 0.00 -

PP1

WT c-Src 1.5 Relative Rate 13


9


PP1

T338C c-Src 1.25 7 1.00-Relative Rate 0.75-

13

9

Thu May 26, 2011 14:21 PDT

AG_144492-2_cSRCf-T338C-A_t7promoterB06.seq
/Users/algarske/Documents/Sequencing/cSRC/AG_144492-2_cSRCf-T338C-A_t7promoterB06.seq
From 1 to 918.
Translation 305 a.a. MW=35116.20999999997

H M Q T Q G L A K D A W E I P R E S L R CATATGCAGACCCAGGGACTCGCCAAGGACGCGTGGGGAAATCCCCCGGGAGTCGCTGCGG

L E V K L G Q G C F G E V W M G T W N G CTGGAGGTGAAGCTGGGCAGGCTGCTTTGGAGAGGTCTGGATGGGGACCTGGAACGGC

T T R V A I K T L K P G T M S P E A F L ACCACCAGAGTGGCCATAAAGACTCTGAAGCCCGGCACCATGTCCCCGGAGGCCTTCCTG

Q E A Q V M K K L R H E K L V Q L Y A V CAGGAAGCCCAAGTGATGAAGAAGCTCCGGCATGAGAAGCTGGTTCAGCTGTACGCAGTG

V S E E P I Y I V C E Y M S K G S L L D GTGTCGGAAGAGCCCATCTACATCGTCTGTGAGTACATGAGCAAGGGGAGCCTCCTGGAT

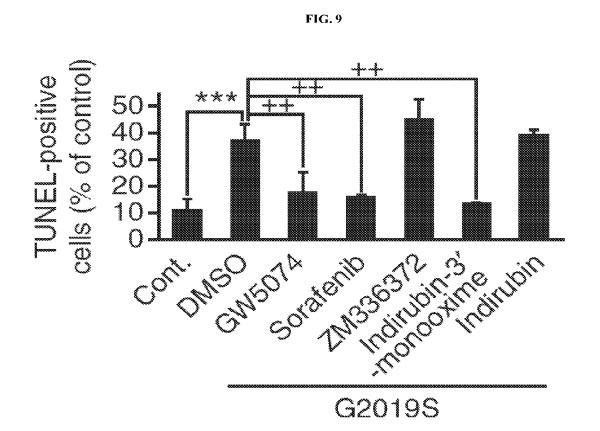
F L K G E M G K Y L R L P Q L V D M A A TTCCTGAAGGAGAGATGGGCAAGTACCTGCGGCTGCCACAGCTCGTCGATATGGCTGCT

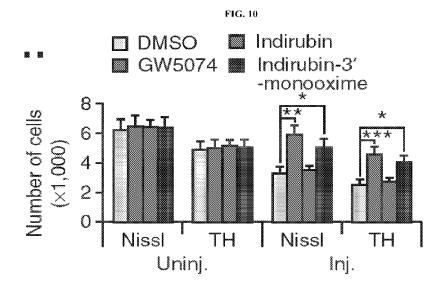
Q I A S G M A Y V E R M N Y V H R D L R CAGATTGCATCCGGCATGGCCTATGTGGAGAGGATGAACTACGTGCACCGAGACCTGCGG

A A N I L V G E N L V C K V A D F G L A GCGGCCAACATCCTGGTGGGGGAGAACCTGGTGTGCAAGGTGGCTGACTTTGGGCTGGCA

R L I E D N E Y T A R Q G A K F P I K W CGCCTCATCGAGGACAACGAGTACACAGCACGGCAAGGTGCCAAGTTCCCCATCAAGTGG

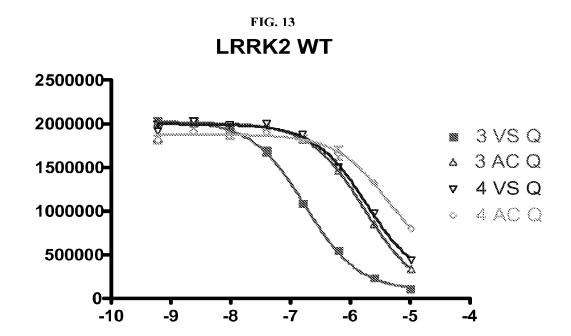
T A F E A A L Y G R F T I K S D V W S F

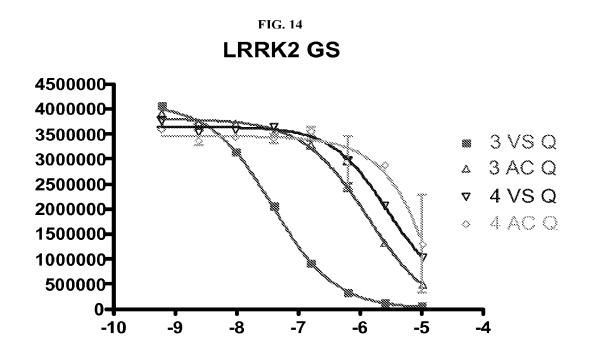

G I L L T E L T T K G R V P Y P G M V N GGCATCCTGCTGACTGACCACCACGACGGCTGCCCATACCCAGGGATGGTCAAC


R E V L D Q V E R G Y R M P C P P E C P AGGGAGGTGCTGGACCAGGTGGAGAGGGGCTACCGCATGCCCTGCCCGCCGAGTGCCCC

E S L H D L M C Q C W R K D P E E R P T GAGTCGCTGCATGACCTCATGTGCCAGTGCTGCGGGAAGGACCCTGAGGAGCGGCCCACT

F E Y L Q A F L E D Y F T S T E P Q Y Q TTTGAGTACCTGAGGGCCTTCCTGGAGGACTACTTCACCTCGACAGAGCCCCAGTACCAG


P G E N L *
CCTGGAGAGAACCTATAG



	3-vs-Q
втк	59
CHEK2 (CHK2)	53
EGFR (ErbB1)	84
EGFR (ErbB1) L858R	69
EGFR (ErbB1) L861Q	76
EGFR (ErbB1) T790M L858R	41
ERBB2 (HER2)	66
ERBB4 (HER4)	80
FLT3 D835Y	99
GRK5	49
LRRK2	75
LRRK2 G2019S	91
PDGFRA V561D	45
PIK3C2B (PI3K-C2 beta)	65
RPS6KA6 (RSK4)	49
SRMS (Srm)	71
TXK	78

	FIG. 12
WT LRRK2	G2019S LRRK2
156 nM	33 nM
>1000 nM	>1000 nM
>1000 nM	>1000 nM
>1000 nM	>1000 nM

May 31, 2016

FIG. 15

<i></i>	FIG. 16	
R=	WT LRRK2 IC ₅₀	G2019SLRRK2 IC ₅₀
🏏 (3-vs-Q)	213 nM	45.5 nM
₹-Me	353 nM	100 nM
2,	334 nM	121 nM
*^ <u>/</u>	241 nM	90.1 nM
	186 nM	46.9 nM
C.	329 nM	57.7nM
₹ F	380 nM	274 nM
3.	334 nM	121 nM

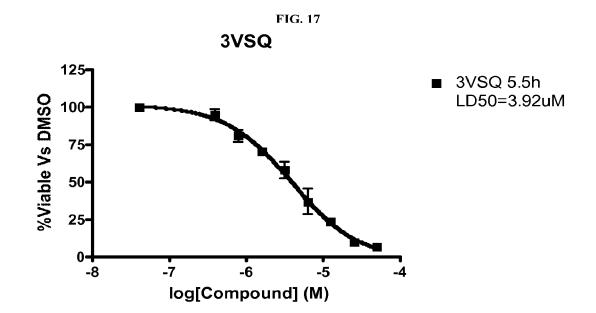
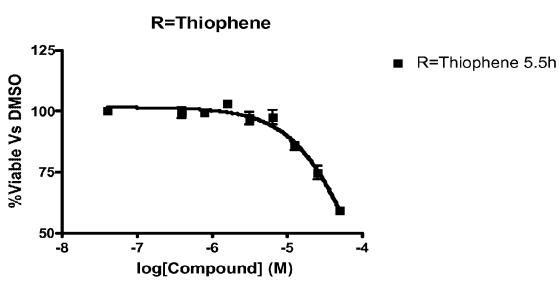



FIG. 18

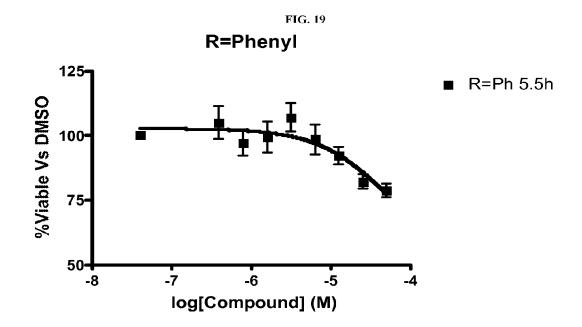
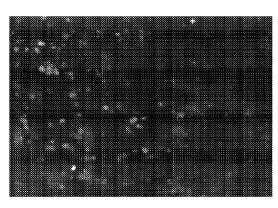
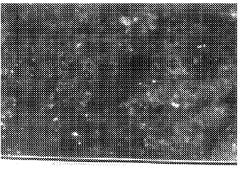




FIG. 20

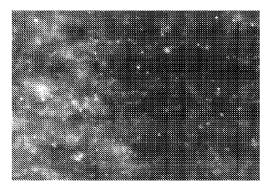
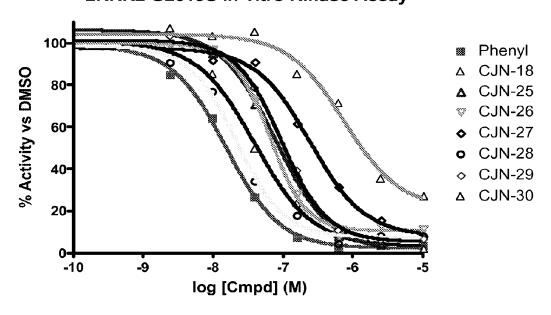



FIG. 21
LRRK2 G2019S in-vitro Kinase Assay

May 31, 2016

FIG. 22

1

METHODS AND COMPOSITIONS FOR KINASE INHIBITION

CROSS-REFERENCES TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Patent Application 61/351,663, filed Jun. 4, 2010, and International Patent Application PCT/US2011/039347, filed Jun. 6, 2011, which are hereby incorporated by reference in their entirety for all purposes.

STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT REFERENCE TO A "SEQUENCE LISTING," A TABLE, OR A COMPUTER PROGRAM LISTING APPENDIX SUBMITTED AS AN ASCII TEXT FILE

The Sequence Listing written in file -122-1.TXT, created on Jan. 23, 2013, 229,376 bytes, machine format IBM-PC, MS-Windows operating system, is hereby incorporated by reference in its entirety for all purposes.

This invention was made with Government support under 25 Grant Nos. 5F32CA138103-2 and 1R01EB001987-16, awarded by the National Institutes of Health. The Government has certain rights in this invention.

BACKGROUND OF THE INVENTION

Kinases, which constitute a large family of enzymes (>500 in humans), catalyze the transfer of the γ -phosphate of ATP to protein substrates. Reversible phosphorylation plays a paramount role in cell signaling processes and is regulated by 35 kinases and phosphatases. Accordingly, kinases are critical mediators of a myriad of signal transduction processes. Aberrant kinase activity is linked to cancer as well as metabolic, immunological, and nervous system disorders. As a result, kinases have emerged as an important class of drug targets for 40 human disease. However, due to the conserved nature of the active sites of the protein kinase family, it is difficult to obtain selective inhibitors for any one kinase.

There are at least 518 kinases, such as those which catalyze the transfer of the gamma phosphate of ATP to protein and 45 small molecule substrates and are involved in cell signaling processes. Small molecules provide a means for delineating kinase signaling because they are fast acting and dosable. However, because all kinase active sites recognize ATP, it is difficult to develop selective ATP-competitive inhibitors. 50 Several years ago, a chemical genetic strategy for selective kinase inhibition was developed with reversible inhibitors (U.S. Patent Publication No. 2009/0221614). The chemical genetic strategy involves the engineered mutation of a conserved bulky residue in the kinase active site known as "the 55 gatekeeper" to a small residue such as glycine or alanine (See Bishop A C, et al. (1998) Design of allele-specific inhibitors to probe protein kinase signaling. Curr Biol 8(5):257-266; and Bishop AC, et al. (2000) A chemical switch for inhibitorsensitive alleles of any protein kinase. Nature 407(6802):395-60 401). The engineered active site can then accommodate an inhibitor capable of occupying the newly formed binding pocket. While this strategy has utility, mutation of the gatekeeper residue to a small amino acid may impair the activity of the kinase and the selective inhibition can only be applied 65 to one kinase at a time. In addition, it is sometimes not possible to achieve the desired potency.

2

It is known in the field that mutations in Leucine-Rich Repeat Kinase 2 (Lrrk-2) can lead to Parkinsons Disease. Also, it is thought that Parkinson's Disease (PD) is caused by uncontrolled apoptosis of dopaminergic neurons. Because inhibition of Lrrk-2 kinase activity can inhibit the apoptotic effects, there is a need to develop inhibitors for Lrrk-2 to provide treatments for Parkinson's Disease.

As such, there is a need in the field to develop kinase gatekeeper residue mutations which do not diminish kinase activity or ATP affinity as well as small molecules which inhibit these kinases. There is also a need to develop effective Lrrk-2 inhig. Surprisingly, the present invention solves these as well as other problems in the field.

BRIEF SUMMARY OF THE INVENTION

In one aspect, the present invention provides a compound having the formula:

$$(R^{1}-L^{1})\frac{N}{a \parallel N}$$

$$(R^{2}-R^{3})_{b};$$

$$(R^{2}-R^{3})_{b};$$

$$(R^{2}-R^{2})_{b};$$

$$(R^{2}-R^{3})_{b};$$

(II)
$$\begin{array}{c}
A \\
+ L^{3} - R^{3})_{b} \\
\\
R^{1} \\
\end{array}$$
(II)

$$(R^{1}-L^{1})_{a} \xrightarrow{\stackrel{\Pi}{\longrightarrow}} L^{5} \xrightarrow{\stackrel{\Pi}{\longrightarrow}} (L^{2}-R^{2})_{c}.$$

X is =N- or $=C(L^6-R^6)-$. Ring A is, in each instance, independently selected from cycloalkyl, heterocycloalkyl, aryl, or heteroaryl; L¹, L², L³, L⁴, L⁵, and L⁶ are, in each instance, independently selected from a bond, -C(O)-, $-C(O)N(R^7)$, -C(O)O, $-S(O)_e$, $-S(O)_2N(R^7)$ -O, $-N(R^7)$, $-N(R^7)C(O)N(R^8)$, substituted or unsubstituted alkylene, substituted or unsubstituted heteroalkylene, substituted or unsubstituted cycloalkylene, substituted or unsubstituted heterocycloalkylene, substituted or unsubstituted arylene, or substituted or unsubstituted heteroarylene, wherein g is an integer from 0 to 2; R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , and R^8 are, in each instance, independently selected from hydrogen, halogen, —CN, —OH, —NH₂, -COOH, —CONH₂, —NO₂, —SH, —SO₂Cl, —SO₃H, -SO₄H, —SO₂NH₂, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocy-

cloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl; a is an integer from 0 to 2; b is an integer from 0 to 5; and c is an integer from 0 to 4.

In a second aspect, the present invention provides a recombinant kinase comprising a cysteine substitution at a gate- 5 keeper amino acid position.

In a third aspect, the present invention provides a co-crystal comprising a recombinant kinase and a compound of provided herein (e.g. formula I, II, or III).

In a fourth aspect, the present invention provides an isolated nucleic acid comprising a polynucleotide sequence encoding a recombinant kinase provided herein.

In a fifth aspect, the present invention provides a method of inhibiting a recombinant kinase provided herein, comprising contacting the recombinant kinase with an effective amount of an inhibitor provided herein, thereby inhibiting the recombinant kinase.

In a sixth aspect, the present invention provides a compound having the formula:

$$(XV)$$

$$L^{4}$$

$$A \rightarrow (L^{3}-R^{3})_{b}$$

$$(L^{2}-R^{2})_{c}.$$

 X^1 and X^2 are, in each instance, independently = N— or $= C(-L^6-R^6)$ —. Ring A is as defined above. R^1, R^2 , and R^3 are as defined above. L^1, L^2 , and L^3 are as defined above. The 35 variables b and c are as defined above.

In a seventh aspect, the present invention provides a method of inhibiting a Lrrk-2 kinase, the method comprising contacting the Lrrk-2 kinase with an effective amount of a Lrrk-2 inhibitor, thereby inhibiting the Lrrk-2 kinase.

In an eighth aspect, the present invention provides a method of forming a recombinant kinase, comprising transforming a cell with a nucleic acid as set forth herein, thereby forming a recombinant kinase as set forth herein.

In a ninth aspect, the present invention provides a method 45 of treating a kinase-associated disease or condition, in a patient in need thereof, said method comprising administering to said patient a therapeutically effective amount of a compound of the present invention, thereby treating a kinase-associated disease or condition.

In a tenth aspect, the present invention provides a method of treating a Lrrk-2-associated disease or condition, in a patient in need thereof, said method comprising administering to said patient a therapeutically effective amount of a compound of the present invention, thereby treating a Lrrk- 55 2-associated disease or condition.

In an eleventh aspect, the present invention provides a kit comprising, a recombinant kinase or a nucleic acid provided herein; and instructions for using the kit.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a schematic of the chemical genetic strategies for inhibiting protein kinases. Kinases are depicted on top, e.g. WT, AS, and ES, and inhibitors types are represented on 65 the bottom. Wild type (WT) kinases generally harbor hydrophobic gatekeeper residues and may not be inhibited selec-

4

tively. An analog-sensitive (AS) protein kinase has an engineered glycine or alanine gatekeeper and may be selectively inhibited by a bulky inhibitor. An electrophile-sensitive (ES) protein kinase contains an engineered cysteine gatekeeper and may be selectively inhibited by an electrophilic inhibitor.

FIG. 2 shows the crystal structure of compound 9 bound covalently to c-Src-ES1. The experimental electron density of c-Src-ES1 at 2.20 Å resolution is shown $(2F_0-F_c \text{ map at } 1\sigma)$. (A) The pyrazolopyrimidine portion of compound 9 (green) interacts with the hinge region of c-Src (Met-341 and Glu-339), while the sulfonamide group makes a hydrogen bonds with Glu-310 of the αC helix (B) Electron density reveals a covalent linkage between Cys-338 and compound 9. The oxygen atoms of the sulfonamide interact with the backbone of Asp-404 and via a water molecule with Phe-405, both of which are part of the DFG-motif of the kinase (C) Comparison of structural features of compound 9 bound to c-Src-ES1 and a known pyrazolopyrimidine compound bound to WT c-Src. Both compounds engage the hinge region in a similar 20 fashion and bind the αC helix in the "in" conformation. Furthermore, both compounds participate in hydrogen bonding interactions with Glu-310 and backbone amides of the DFG-motif. However while the known pyrazolopyrimidine compound binds in the "DFG-out" conformation, compound 9 engages the "DFG-in" orientation. The sulfhydryl of the Cys-338 points in the opposite direction relative to the hydroxyl group of Thr-338 in order to facilitate a covalent bond with compound 9.

FIG. 3 shows an assay for MOK inhibition by cysteine gatekeeper-targeting compounds. (top) FLAG-MOK expressed in COST cells was immunoprecipitated and assayed in vitro with a myelin basic protein (MBP) substrate and inhibitors at a concentration of 1 μ M. Autoradiography is shown. (center) Quantification of the percent MBP phosphorylated from three independent experiments with associated standard errors. All values are normalized relative to the MOK+DMSO lane. (bottom) Western blot of loading controls for FLAG-MOK are shown.

FIG. 4 shows a cellular dose response analysis for inhibition of v-Src-ES1 (I338C) with electrophilic inhibitors. Cells transfected NIH-3T3 with either v-Src-ES1 or I338T v-Src were treated with electrophilic inhibitors or non-reactive analogs for one hour (see the far right column of each run, e.g. 10 μM 11; 10 μM 11; 10 μM 14; 10 μM 14). Kinase activity was monitored by blotting for global phosphotyrosine levels. Actin blots were included to control for protein content.

FIG. 5 shows relative rates of wild type c-Src and T338C c-Src following treatment with PP1, 13 or 9 and purification by gel filtration. Assay was done in triplicate, and average values with standard errors are given.

FIG. 6 shows ESI-oa-TOF mass spectral analysis of covalent labeling of T338C c-Src and WT c-Src with compound 9. T338C c-Src (a) or WT c-Src (b) $(15\,\mu\text{M})$ was incubated with two equivalents of compound 9 and analyzed by full-protein mass spectrometry after 5 minutes of reaction. A 372 Da mass change occurs upon covalent labeling. Deconvoluted mass spectra are shown.

FIG. 7 shows analysis of the activity of v-Src gatekeeper variants in cells by Western blot. NIH-3T3 cells lines were infected with several v-Src gatekeeper variants. The kinase activity of the variants was analyzed by blotting for global phosphotyrosine levels (pTyr). The Src and actin blots account for Src expression levels and total protein content, respectively.

FIG. 8 shows the amino acid sequence (SEQ ID NO: 2) of Src and also the nucleic acid sequence (SEQ ID NO: 1) encoding therefor.

FIG. 9 shows inhibition of Lrrk-2 kinase activity.

FIG. 10 shows inhibition of Lrrk-2 kinase activity.

FIG. 11 shows selectivity of compound 19 (3-vs-Q) in the Invitrogen SelectScreen Kinase Assay.

FIG. 12 shows SAR analysis and inhibition as dependent on a vinylsulfonamide in the 3 position.

FIG. 13 shows SAR analysis and inhibition as dependent on a vinylsulfonamide in the 3 position.

FIG. 14 shows SAR analysis and inhibition as dependent on a vinylsulfonamide in the 3 position.

 $FIG.\,15$ shows the synthesis of compounds suitable for use with the present invention.

FIG. 16 shows in vitro kinase assay data for wild type and G2019S Lrrk-2.

FIG. 17 shows toxicity profiles. LD50 of compound 19 (3-vs-Q) LD50=3.92 μM; All other compounds ≥50 μM.

FIG. **18** shows toxicity profiles. LD50 of compound 19 (3-vs-Q) LD50=3.92 μM; All other compounds ≥50 μM.

FIG. 19 shows toxicity profiles. LD50 of compound 19 $_{20}$ (3-vs-Q) LD50=3.92 μ M; All other compounds \geq 50 μ M.

FIG. **20** shows immunocytochemistry. Top left: Staruasporine, TUNEL stain; Top Right: G2019S mutant, –drug; Bottom: G2019S mutant, +Th.

FIG. 21 shows assay data.

FIG. 22 shows a synthesis of compounds suitable for use with the present invention.

DETAILED DESCRIPTION OF THE INVENTION

I. General

Provided herein, inter alia, are methods and compositions for imparting to a kinase the capability of being inhibited by a heterocyclic compound e.g., a cysteine substituted kinase having a gatekeeper amino acid residue within an ATP binding site of a kinase replaced with a cysteine residue. Also provided are methods and compositions for inhibiting a kinase with a heterocyclic compound. Furthermore, methods and compositions are provided for determining a biological activity of a kinase and treating kinase-associate diseases. In addition, methods and compositions are provided for inhibiting a Lrrk-2 kinase.

II. Definitions

The term "alkyl," by itself or as part of another substituent, 45 means, unless otherwise stated, a straight (i.e. unbranched) or branched chain, or combination thereof, which may be fully saturated, mono- or polyunsaturated and can include di- and multivalent radicals, having the number of carbon atoms designated (i.e. C₁-C₁₀ means one to ten carbons). Examples of 50 saturated hydrocarbon radicals include, but are not limited to, groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, isobutyl, sec-butyl, homologs and isomers of, for example, n-pentyl, n-hexyl, n-heptyl, n-octyl, and the like. An unsaturated alkyl group is one having one or more double 55 bonds or triple bonds. Examples of unsaturated alkyl groups include, but are not limited to, vinyl, 2-propenyl, crotyl, 2-isopentenyl, 2-(butadienyl), 2,4-pentadienyl, 3-(1,4-pentadienyl), ethynyl, 1- and 3-propynyl, 3-butynyl, and the higher homologs and isomers.

The term "alkylene" by itself or as part of another substituent means a divalent radical derived from an alkyl, as exemplified, but not limited, by $-\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2$ —, $-\text{CH}_2\text{CH}=\text{CH}=\text{CH}_2$ —, $-\text{CH}_2\text{CH}=\text{CH}=\text{CH}_2$ —. Typically, an alkyl (or 65 alkylene) group will have from 1 to 24 carbon atoms, with those groups having 10 or fewer carbon atoms being preferred

6

in the present invention. A "lower alkyl" or "lower alkylene" is a shorter chain alkyl or alkylene group, generally having eight or fewer carbon atoms.

The term "heteroalkyl," by itself or in combination with another term, means, unless otherwise stated, a stable straight or branched chain, or combinations thereof, consisting of at least one carbon atoms and at least one heteroatom selected from the group consisting of O, N, P, Si and S, and wherein the nitrogen, phosphorus, and sulfur atoms may optionally be oxidized and the nitrogen heteroatom may optionally be quaternized. The heteroatom(s) O, N, P and S and Si may be placed at any interior position of the heteroalkyl group or at the position at which alkyl group is attached to the remainder of the molecule. Examples include, but are not limited to, $-CH_2-CH_2-O-CH_3$, -CH₂-CH₂-N(CH₃)-CH₃, -CH₂-S-CH₂-CH₃, -CH₂-CH₂-, -S(O)-CH₃, -CH₂-CH₂-S(O)₂-CH₃, -CH=CH-O-CH₃, -Si(CH₃)₃, -CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₃ CH=N-OCH₃, -CH=CH-N(CH₃)-CH₃, O-CH₃, —O—CH₂—CH₃, and —CN. Up to two or three heteroatoms may be consecutive, such as, for example, —CH₂-NH—OCH₃ and —CH₂—O—Si(CH₃)₃. Similarly, the term "heteroalkylene" by itself or as part of another substituent means a divalent radical derived from heteroalkyl, as exemplified, but not limited by, —CH₂—CH₂—S—CH₂—CH₂--CH₂-S-CH₂-CH₂-NH-CH₂-. For heteroalkylene groups, heteroatoms can also occupy either or both of the chain termini (e.g., alkyleneoxo, alkylenedioxo, alkyleneamino, alkylenediamino, and the like). Still further, for alkylene and heteroalkylene linking groups, no orientation of the linking group is implied by the direction in which the formula of the linking group is written. For example, the formula —C(O)OR'— represents both —C(O)OR'— and -R'OC(O)—. As described above, heteroalkyl groups, as 35 used herein, include those groups that are attached to the remainder of the molecule through a heteroatom, such as -C(O)R', -C(O)NR', -NR'R'', -OR', -SR', and/or —SO₂R'. Where "heteroalkyl" is recited, followed by recitations of specific heteroalkyl groups, such as -NR'R" or the like, it will be understood that the terms heteroalkyl and -NR'R" are not redundant or mutually exclusive. Rather, the specific heteroalkyl groups are recited to add clarity. Thus, the term "heteroalkyl" should not be interpreted herein as excluding specific heteroalkyl groups, such as -NR'R" or the like.

The terms "cycloalkyl" and "heterocycloalkyl", by themselves or in combination with other terms, represent, unless otherwise stated, cyclic versions of "alkyl" and "heteroalkyl". respectively. Additionally, for heterocycloalkyl, a heteroatom can occupy the position at which the heterocycle is attached to the remainder of the molecule. Examples of cycloalkyl include, but are not limited to, cyclopentyl, cyclohexyl, 1-cyclohexenyl, 3-cyclohexenyl, cycloheptyl, and the like. Examples of heterocycloalkyl include, but are not limited to, 1-(1,2,5,6-tetrahydropyridyl), 1-piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-morpholinyl, 3-morpholinyl, tetrahydrofuran-2-yl, tetrahydrofuran-3-yl, tetrahydrothien-2-yl, tetrahydrothien-3-yl, 1-piperazinyl, 2-piperazinyl, and the like. The terms "cycloalkylene" and "heterocycloalkylene" refer to the divalent derivatives of cycloalkyl and heterocycloalkyl, 60 respectively.

The term "aryl" means, unless otherwise stated, a polyunsaturated, aromatic, hydrocarbon substituent which can be a single ring or multiple rings (preferably from 1 to 3 rings) which are fused together (e.g. naphthyl) or linked covalently. The term "heteroaryl" refers to aryl groups (or rings) that contain heteroatoms (in at least one ring in the case of multiple rings) selected from N, O, and S, wherein the nitrogen

and sulfur atoms are optionally oxidized, and the nitrogen atom(s) are optionally quaternized. A heteroaryl group can be attached to the remainder of the molecule through a carbon or heteroatom. Non-limiting examples of aryl and heteroaryl groups include phenyl, 1-naphthyl, 2-naphthyl, 4-biphenyl, 5 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, 3-pyrazolyl, 2-imidazolyl, 4-imidazolyl, pyrazinyl, 2-oxazolyl, 4-oxazolyl, 2-phenyl-4oxazolyl, 5-oxazolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrim- 10 idyl, 4-pyrimidyl, 5-benzothiazolyl, purinyl, 2-benzimidazolyl, 5-indolyl, 1-isoquinolyl, 6-isoquinolyl, 2-quinoxalinyl, 5-quinoxalinyl, 3-quinolyl, and 6-quinolyl. Thus, the term "heteroaryl" include fused ring structures in which at least one ring includes at least two double bonds. Substituents 15 for each of above noted aryl and heteroaryl ring systems are selected from the group of acceptable substituents described below. The terms "arylene" and "heteroarylene" refer to the divalent radicals of aryl and heteroaryl, respectively.

For brevity, the term "aryl" when used in combination with 20 other terms (e.g., aryloxo, arylthioxo, arylalkyl) includes both aryl and heteroaryl rings as defined above. Thus, the term "arylalkyl" is meant to include those radicals in which an aryl group is attached to an alkyl group (e.g., benzyl, phenethyl, pyridylmethyl and the like) including those alkyl groups in 25 which a carbon atom (e.g., a methylene group) has been replaced by, for example, an oxygen atom (e.g., phenoxymethyl, 2-pyridyloxymethyl, 3-(1-naphthyloxy)propyl, and the like). However, the term "haloaryl," as used herein is meant to cover only aryls substituted with one or more halogens.

Where a heteroalkyl, heterocycloalkyl, or heteroaryl includes a specific number of members (e.g. "3 to 7 membered"), the term "member" referrers to a carbon or heteroatom

The term "oxo" as used herein means an oxygen that is 35 double bonded to a carbon atom.

Each of above terms (e.g., "alkyl," "heteroalkyl," "cycloalkyl", and "heterocycloalkyl", "heteroaryl" as well as their divalent radical derivatives) are meant to include both substituted and unsubstituted forms of the indicated radical. 40 Preferred substituents for each type of radical are provided below

Substituents for alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl monovalent and divalent derivative radicals (including those groups often referred to as alkylene, alkenyl, het- 45 eroalkylene, heteroalkenyl, alkynyl, cycloalkyl, heterocycloalkyl, cycloalkenyl, and heterocycloalkenyl) can be one or more of a variety of groups selected from, but not limited to: \bigcirc OR', \bigcirc O, \bigcirc NR', \bigcirc N \bigcirc OR', \bigcirc NR'R", \bigcirc SR', -halogen, —SiR'R"R"", —OC(O)R', —C(O)R', —CO₂R', 50 and —NO₂ in a number ranging from zero to (2 m'+1), where m' is the total number of carbon atoms in such radical. R', R", 55 R'" and R"" each preferably independently refer to hydrogen, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl (e.g., aryl substituted with 1-3 halogens), substituted or unsubstituted alkyl, 60 alkoxy or thioalkoxy groups, or arylalkyl groups. As used herein, an "alkoxy" group is an alkyl attached to the remainder of the molecule through a divalent oxygen radical. When a compound of the invention includes more than one R group, for example, each of the R groups is independently selected as 65 are each R', R", R" and R"" groups when more than one of these groups is present. When R' and R" are attached to the

8

same nitrogen atom, they can be combined with the nitrogen atom to form a 4-, 5-, 6-, or 7-membered ring. For example, —NR'R" is meant to include, but not be limited to, 1-pyrrolidinyl and 4-morpholinyl. From the above discussion of substituents, one of skill in the art will understand that the term "alkyl" is meant to include groups including carbon atoms bound to groups other than hydrogen groups, such as haloalkyl (e.g., —CF₃ and —CH₂CF₃) and acyl (e.g., —C(O) CH₃, —C(O)CH₃, —C(O)CH₃, and the like).

Similar to the substituents described for alkyl radicals above, exemplary substituents for aryl and heteroaryl groups (as well as their divalent derivatives) are varied and are selected from, for example: halogen, -OR', -NR'R", -SR', -halogen, -SiR'R''R''', -OC(O)R', -C(O)R', $-CO_2R'$, -C(O)NR'R", -OC(O)NR'R", -NR"C(O)R', -NR'--C(O)NR"R", -NR"C(O)OR', (NR'R"R"")=NR"", -NR-C(NR'R")=NR"", -S(O)R', $-S(O)_2R'$, $-S(O)_2NR'R''$, $-NRSO_2R'$, -CN and $-NO_2$, -R', $-CH(Ph)_2$, fluoro(C_1 - C_4)alkoxo, and fluoro(C_1 - C_4) alkyl, in a number ranging from zero to the total number of open valences on aromatic ring system; and where R', R", R" and R"" are preferably independently selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl and substituted or unsubstituted heteroaryl. When a compound of the invention includes more than one R group, for example, each of the R groups is independently selected as are each R', R", R" and R"" groups when more than one of these groups is present.

Two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally form a ring of the formula -T-C(O)—(CRR') $_q$ —U—, wherein T and U are independently—NR—,—O—,—CRR'— or a single bond, and q is an integer of from 0 to 3. Alternatively, two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -A-(CH₂)_r—B—, wherein A and B are independently -CRR'-, -O-, -NR-, -S-, -S(O)-, -S(O)₂-, —S(O)₂NR'— or a single bond, and r is an integer of from 1 to 4. One of the single bonds of the new ring so formed may optionally be replaced with a double bond. Alternatively, two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula $-(CRR')_s$ -X' $-(C"R'")_d$, where s and d are independently integers of from 0 to 3, and X' is —O—, —NR'- $-S_{-}, -S(O)_{-}, -S(O)_{2}_{-}, \text{ or } -S(O)_{2}NR'_{-}.$ The substituents R, R', R" and R" are preferably independently selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl.

As used herein, the term "heteroatom" or "ring heteroatom" is meant to include oxygen (O), nitrogen (N), sulfur (S), phosphorus (P), and silicon (Si).

The terms "halo" or "halogen," by themselves or as part of another substituent, mean, unless otherwise stated, a fluorine, chlorine, bromine, or iodine atom. Additionally, terms such as "haloalkyl," are meant to include monohaloalkyl and polyhaloalkyl. For example, the term "halo (C_1-C_4) alkyl" is mean to include, but not be limited to, trifluoromethyl, 2,2,2-trifluoroethyl, 4-chlorobutyl, 3-bromopropyl, and the like.

A "size-limited substituent" or "size-limited substituent group," as used herein means a group selected from all of the substituents described above for a "substituent group," wherein each substituted or unsubstituted alkyl is a substituted or unsubstituted or

tuted heteroalkyl is a substituted or unsubstituted 2 to 20 membered heteroalkyl, each substituted or unsubstituted cycloalkyl is a substituted or unsubstituted C_4 - C_8 cycloalkyl, and each substituted or unsubstituted heterocycloalkyl is a substituted or unsubstituted 4 to 8 membered heterocy- 5 cloalkyl.

A "lower substituent" or "lower substituent group," as used herein means a group selected from all of the substituents described above for a "substituent group," wherein each substituted or unsubstituted alkyl is a substituted or unsubstituted or C_1 - C_8 alkyl, each substituted or unsubstituted heteroalkyl is a substituted or unsubstituted heterocycloalkyl, and each substituted or unsubstituted 5 to 7 membered heterocycloalkyl.

In some embodiments, each substituted group described in the compounds herein is substituted with at least one substituent group. More specifically, in some embodiments, each substituted alkyl, substituted heteroalkyl, substituted 20 cycloalkyl, substituted heterocycloalkyl, substituted aryl, substituted heteroaryl, substituted alkylene, substituted heteroaryl, substituted alkylene, substituted heterocycloalkylene, substituted cycloalkylene, substituted heterocycloalkylene, substituted arylene, and/or substituted heteroarylene described in the compounds herein are substituted with at least one or all of these groups are substituted with at least one or all of these groups are substituted with at least one or all of these groups are substituted with at least one lower substituent group.

In other embodiments of the compounds herein, each substituted or unsubstituted alkyl is a substituted or unsubstituted C_1 - C_{20} alkyl, each substituted or unsubstituted heteroalkyl is a substituted or unsubstituted 2 to 20 membered heteroalkyl, each substituted or unsubstituted cycloalkyl is a substituted or 35 unsubstituted C₃-C₈ cycloalkyl, and/or each substituted or unsubstituted heterocycloalkyl is a substituted or unsubstituted 3 to 8 membered heterocycloalkyl. In some embodiments of the compounds herein, each substituted or unsubstituted alkylene is a substituted or unsubstituted C₁-C₂₀ 40 alkylene, each substituted or unsubstituted heteroalkylene is a substituted or unsubstituted 2 to 20 membered heteroalkylene, each substituted or unsubstituted cycloalkylene is a substituted or unsubstituted C₃-C₈ cycloalkylene, and/or each substituted or unsubstituted heterocycloalkylene is a substi- 45 tuted or unsubstituted 3 to 8 membered heterocycloalkylene.

In some embodiments, each substituted or unsubstituted alkyl is a substituted or unsubstituted C₁-C₈ alkyl, each substituted or unsubstituted heteroalkyl is a substituted or unsubstituted 2 to 8 membered heteroalkyl, each substituted or 50 unsubstituted cycloalkyl is a substituted or unsubstituted C₅-C₇ cycloalkyl, and/or each substituted or unsubstituted heterocycloalkyl is a substituted or unsubstituted 5 to 7 membered heterocycloalkyl. In some embodiments, each substituted or unsubstituted alkylene is a substituted or unsubsti- 55 tuted C1-C8 alkylene, each substituted or unsubstituted heteroalkylene is a substituted or unsubstituted 2 to 8 membered heteroalkylene, each substituted or unsubstituted cycloalkylene is a substituted or unsubstituted C₅-C₇ cycloalkylene, and/or each substituted or unsubstituted het- 60 erocycloalkylene is a substituted or unsubstituted 5 to 7 membered heterocycloalkylene. In some embodiments, the compound is a chemical species set forth in the Examples section below.

A "bulky residue" in an amino acid residue having a side 65 chain group that is larger (i.e. having more atoms and tending to fill more space) than glycine and alanine, and optionally

10

larger than cysteine. A bulky residue may be methionine, leucine, phenylalanine and threonine In some embodiments, the bulky reside may be larger than leucine, isoleucine and threonine. In some embodiments, the bulky reside includes a cyclic moiety.

"Electrophilic" is used herein in accordance with its plain ordinary meaning and refers to a chemical group having a tendency to attract, acquire or accept electrons or react at electron-rich sites.

"Nucleophilic" is used herein in accordance with its plain ordinary meaning and refers to a chemical group having a tendency to donate electrons (e.g. lower electron density) or react at electron poor sites.

"Electrophilic moiety" as used herein refers to a functional group or chemical substituent that is electrophilic. Example electrophilic moieties include, but are not limited to vinylsulfonamides, acrylamides, epoxides, and fluoromethylketones.

As defined herein, the term "electrophilic substituent" is a substituent that is electrophilic. An electrophilic substituent, electrophilic moieties and electrophilic chemical groups are typically electron-poor functional groups and can react with an electron-donating group, such as a nucleophile, by accepting an electron pair. In some embodiments, the electrophilic substituent, moiety or chemical group of a compound is capable of reacting with a cysteine residue. In some embodiments, the electrophilic substituent, moiety or chemical group is capable of forming a covalent bond with a cysteine residue within the ATP binding site of the kinase. The covalent bond is usually formed between the electrophilic substituent, moiety or chemical group and the sulfhydryl group of the cysteine and may be a reversible or irreversible bond. In some embodiments, the covalent bond is irreversible.

As used herein, the terms "protein kinase" or "kinase" are used in accordance with its plain ordinary meaning and referst to an enzyme that is capable of phosphorylating an amino acid residue, e.g. an amino acid residue on a protein. Typically specific serine, threonine, or tyrosine residues are phosphorylated. Thus, protein kinase encompasses serine protein kinases, threonine protein kinases, and tyrosine protein kinases. An "inhibitor of a protein kinase" is a compound or agent that reduces the activity of a protein kinase. In some embodiments, a "protein kinase inhibitor" is a compound that reduces the activity of the protein kinase by binding to the protein kinase. Thus, a "protein kinase inhibitor" can inhibit activity of the enzyme in a competitive, or a noncompetitive manner.

As defined herein, the term "cysteine substituted kinase" refers to a recombinant kinase where a gatekeeper amino acid residue (e.g. within an ATP binding site of the kinase) is replaced with a cysteine residue. Similarly, a "glycine substituted kinase" refers to a recombinant kinase where a gatekeeper amino acid residue (e.g. within an ATP binding site of the kinase) is replaced with a glycine residue, and a "alanine substituted kinase" refers to a kinase where a gatekeeper amino acid residue (e.g. within an ATP binding site of the kinase) is replaced with a alanine residue.

As defined herein, the term "fused rings" refers to a ring system with two or more rings having at least one bond and two atoms in common.

The terms "nucleic acid," "oligonucleotide," "polynucleotide," and like terms typically refer to polymers of deoxyribonucleotides or ribonucleotides in either single—or double-stranded form, and complements thereof. The term "nucleotide" typically refers to a monomer. The terms encompass nucleic acids containing known nucleotide analogs or modified backbone residues or linkages, which are synthetic, naturally occurring, and non-naturally occurring,

which have similar binding properties as the reference nucleic acid, and which are metabolized in a manner similar to the reference nucleotides. Examples of such analogs include, without limitation, phosphorothioates, phosphoramidates, methyl phosphonates, chiral-methyl phosphonates, 2-O-me- 5 thyl ribonucleotides, and peptide-nucleic acids (PNAs).

Unless otherwise indicated, a particular nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (e.g., degenerate codon substitutions) and complementary sequences, as well as the sequence 10 explicitly indicated. Specifically, degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed-base and/or deoxyinosine residues (Batzer et al., *Nucleic Acid Res.* 19:5081 (1991); Ohtsuka et al., *J. Biol. Chem.* 260:2605-2608 (1985); Rossolini et al., *Mol. Cell. Probes* 8:91-98 (1994)). The term nucleic acid is used interchangeably with gene, cDNA, mRNA, oligonucleotide, and polynucleotide.

Nucleic acids "hybridize" when they associate, typically in solution. Nucleic acids hybridize due to a variety of well-characterized physico-chemical forces, such as hydrogen bonding, solvent exclusion, base stacking and the like. As used herein, the term "stringent hybridization wash conditions" in the context of nucleic acid hybridization experiments, such as Southern and Northern hybridizations, are sequence dependent, and are different under different environmental parameters. An extensive guide to the hybridization of nucleic acids is found in Tijssen, 1993, "Laboratory Techniques in Biochemistry and Molecular Biology-Hybridization with Nucleic Acid Probes," Part I, Chapter 2 (Elsevier, N.Y.), which is incorporated herein by reference.

The terms "peptide," "polypeptide," and "protein" are used interchangeably herein to refer to a polymer of amino acid residues.

The term "amino acid" refers to naturally occurring and synthetic amino acids, as well as amino acid analogs. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, γ -carboxyglutamate, and O-phosphoserine. 40 Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, i.e., an α -carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid.

Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter 50 symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.

An amino acid or nucleotide base "position" is denoted by a number that sequentially identifies each amino acid (or 55 nucleotide base) in the reference sequence based on its position relative to the N-terminus (or 5'-end). Due to deletions, insertions, truncations, fusions, and the like that must be taken into account when determining an optimal alignment, in general the amino acid residue number in a test sequence 60 determined by simply counting from the N-terminus will not necessarily be the same as the number of its corresponding position in the reference sequence. For example, in a case where a variant has a deletion relative to an aligned reference sequence, there will be no amino acid in the variant that 65 corresponds to a position in the reference sequence at the site of deletion. Where there is an insertion in an aligned reference

sequence, that insertion will not correspond to a numbered amino acid position in the reference sequence. In the case of truncations or fusions there can be stretches of amino acids in either the reference or aligned sequence that do not correspond to any amino acid in the corresponding sequence.

12

The terms "numbered with reference to" or "corresponding to," when used in the context of the numbering of a given amino acid or polynucleotide sequence, refers to the numbering of the residues of a specified reference sequence when the given amino acid or polynucleotide sequence is compared to the reference sequence.

A "conservative substitution" as used with respect to amino acids, refers to the substitution of an amino acid with a chemically similar amino acid. Amino acid substitutions which often preserve the structural and/or functional properties of the polypeptide in which the substitution is made are known in the art and are described, for example, by H. Neurath and R. L. Hill, 1979, in "The Proteins," Academic Press, New York. The most commonly occurring exchanges are isoleucine/valine, tyrosine/phenylalanine, aspartic acid/ glutamic acid, lysine/arginine, methionine/leucine, aspartic acid/asparagine, glutamic acid/glutamine, leucine/isoleucine, methionine/isoleucine, threonine/serine, tryptophan/ phenylalanine, tyrosine/histidine, tyrosine/tryptophan, histidine/asparagine, glutamine/arginine, histidine/ glutamine, lysine/asparagine, lysine/glutamine, lysine/ glutamic acid, phenylalanine/leucine, phenylalanine/methionine, serine/alanine, serine/asparagine, valine/leucine, and valine/methionine. In some embodiments, there may be at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 15, at least 20, at least 25, at least 30, at least 35, or at least 40 conservative substitutions.

The term "amino acid substitution set" or "substitution set" refers to a group of amino acid substitutions. A substitution set can have 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or more amino acid substitutions.

The term "isolated" refers to a nucleic acid, polynucleotide, polypeptide, protein, or other component that is partially or completely separated from components with which it is normally associated (other proteins, nucleic acids, cells, etc.). In some embodiments, an isolated polypeptide or protein is a recombinant polypeptide or protein.

A nucleic acid (such as a polynucleotide), a polypeptide, or a cell is "recombinant" when it is artificial or engineered, or derived from or contains an artificial or engineered protein or nucleic acid (e.g. non-natural or not wild type). For example, a polynucleotide that is inserted into a vector or any other heterologous location, e.g., in a genome of a recombinant organism, such that it is not associated with nucleotide sequences that normally flank the polynucleotide as it is found in nature is a recombinant polynucleotide. A protein expressed in vitro or in vivo from a recombinant polynucleotide is an example of a recombinant polypeptide. Likewise, a polynucleotide sequence that does not appear in nature, for example a variant of a naturally occurring gene, is recombinant.

"Identity" or "percent identity," in the context of two or more polypeptide sequences, refers to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues that are the same (e.g., share at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 88% identity, at least about 89%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 97%, at least about 98%, or at least about 99% identity) over a specified region to

a reference sequence, when compared and aligned for maximum correspondence over a comparison window, or designated region as measured using a sequence comparison algorithms or by manual alignment and visual inspection.

Optimal alignment of sequences for comparison and deter- 5 mination of sequence identity can be determined by a sequence comparison algorithm or by visual inspection (see, generally, Ausubel et al., infra). When optimally aligning sequences and determining sequence identity by visual inspection, percent sequence identity is calculated as the 10 number of residues of the test sequence that are identical to the reference sequence divided by the number of non-gap positions and multiplied by 100. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates and 15 sequence algorithm program parameters are designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters as known in the art, for example BLAST or BLAST 2.0. For example, 20 comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, 1981, Adv. Appl. Math. 2:482, by the homology alignment algorithm of Needleman & Wunsch, 1970, J. Mol. Biol. 48:443, by the search for similarity method of Pearson & Lipman, 1988, Proc. Nat'l. 25 Acad. Sci. USA 85:2444, or by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis.). Thus alignment can be carried out for sequences that have 30 deletions and/or additions, as well as those that have substitutions, as well as naturally occurring, e.g., polymorphic or allelic variants, and man-made variants.

The phrase "substantial sequence identity" or "substantial identity," in the context of two nucleic acid or polypeptide 35 sequences, refers to a sequence that has at least 70% identity to a reference sequence. Percent identity can be any integer from 70% to 100%. Two nucleic acid or polypeptide sequences that have 100% sequence identity are said to be "identical." A nucleic acid or polypeptide sequence are said to 40 have "substantial sequence identity" to a reference sequence when the sequences have at least about 70%, at least about 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater 45 sequence identity as determined using the methods described herein, such as BLAST using standard parameters as described above.

The term "pre-protein" refers to a protein including an amino-terminal signal peptide (or leader sequence) region 50 attached. The signal peptide is cleaved from the pre-protein by a signal peptidase prior to secretion to result in the "mature" or "secreted" protein.

A "vector" is a DNA construct for introducing a DNA sequence into a cell. A vector may be an expression vector

14

that is operably linked to a suitable control sequence capable of effecting the expression in a suitable host of the polypeptide encoded in the DNA sequence. An "expression vector" has a promoter sequence operably linked to the DNA sequence (e.g., transgene) to drive expression in a host cell, and in some embodiments a transcription terminator sequence.

The term "expression" includes any step involved in the production of the polypeptide including, but not limited to, transcription, post-transcriptional modification, translation, post-translational modification, and secretion.

The term "operably linked" refers to a configuration in which a control sequence is appropriately placed at a position relative to the coding sequence of the DNA sequence such that the control sequence influences the expression of a polypeptide.

An amino acid or nucleotide sequence (e.g., a promoter sequence, signal peptide, terminator sequence, etc.) is "heterologous" to another sequence with which it is operably linked if the two sequences are not associated in nature.

The terms "transform" or "transformation," as used in reference to a cell, means a cell has a non-native nucleic acid sequence integrated into its genome or as an episome (e.g., plasmid) that is maintained through multiple generations.

The term "culturing" refers to growing a population of microbial cells under suitable conditions in a liquid or solid medium.

The term "introduced," as used in the context of inserting a nucleic acid sequence into a cell, means conjugated, transfected, transduced or transformed (collectively "transformed") or otherwise incorporated into the genome of, or maintained as an episome in, the cell.

As defined herein, the term "gatekeeper amino acid residue" or "gatekeeper residue" refers to a residue (e.g. within the ATP binding site of a kinase) that is capable of controlling or modulating the ability of a kinase substrate to bind to the kinase. For example, in some embodiments, the accessibility of a protein kinase substrate to the ATP binding site is controlled by the gatekeeper residue. In certain embodiments, the gatekeeper residue controls the ability of the substrate to access or bind a hydrophobic pocket adjacent to the ATP binding site. (Elphick et al. ACS Chemical Biology, 2:299-314, 2007). As defined herein, a natural gatekeeper residue refers to a gatekeeper residue identified in a wild-type kinase. Examples of gatekeeper residues include, e.g., Thr338 of c-Src (v-Src numbering, see Liu et al., Chemistry & Biology, 6:671-678, 1999), and Thr 493 of rsk2 (see US Application No. 2009/0221614). Gatekeeper residues in other kinases, e.g., gatekeeper residues corresponding to Thr338 of c-Src can be readily identified by structure-based sequence alignment of kinase domain of various src or non-src kinases. The following is a structure-based sequence alignment of several kinase domains (see U.S. Patent Publication No. 2009/ 0221614). The gatekeeper residues referred to herein are highlighted in bold italics:

Name	Sequence	SEQ ID NO:
src	PEAFLQEAQVMKKLRHEKLVQLYAVVSEEPIYIV T EYM	52
rsk2	krdpteeieillr-ygqhpniitlkdvyddgkyvyvv ${m T}$ elm	53
nek2	-EVEKQMLVSEVNLLRELKHPNIVRYYDRIIDRTNTTLYIV $m{M}$ EYC	54
mekk1	${\tt QEEVVEALREEIRMMSHLNHPNIIRMLGATCEKSNYNLF} {\tt IEWM}$	55

-continued

Name	Sequence	SEQ ID NO:
msk1	MEANTQKEITALK-LCEGHPNIVKLHEVFHDQLHTFLV M ELL	56
plk1	-PHQREKMSMEISIHRSLAHQHVVGFHGFFEDNDFVFVV $m{L}$ ELC	57

Additional gatekeeper residues in various kinases can be identified by sequence alignment (see Liu et al., Chemistry & Biology, 6:671-678, 1999). For example, gatekeeper residues

in various kinases corresponding to Thr338 of v-Src are highlighted in bold underlined in the sequence alignment below:

338 V			
Name	Start	Sequence 338 Ŭ	SEQ ID NO:
v-Src	(318)	RHEKLVQLYAMVSEEPIYIV <u>X</u> EYMSKGSLLDFLKGEMGKY	58
c-Src	(318)	RHEKLVQLYAVVSEEPIYIV#EYMSKGSLLDFLKGETGKY	59
Lck	(296)	QHQRLVRLYAVVTQEPIYII#EYMENGSLVDFLKTPSGIK	60
?yn	(319)	KHDKLVQLYAVVSEEPIYIV EYMNKGSLLDFLKDGEGRA	61
-Yes	(325)	RHDKLVPLYAVVSEEPIYIV	62
rk	(318)	RHDKLVQLYAVVSEEPIYIV EFMSQGSLLDFLKDGDGRY	63
c-Fgr	(311)	RHDKLVQLYAVVSEEPIYIV <u>E</u> EFMCHGSLLDFLKNPEGQD	64
yn	(295)	QHDKLVRLYAVVTREEPIYII <u>X</u> EYMAKGSLLDFLKSDEGGK	65
łck	(318)	QHDKLVKLHAVVTKEPIYII #EFMAKGSLLDFLKSDEGSK	66
31k	(287)	QHERLVRLYAVVTREPIYIV <u>X</u> EYMARGCLLDFLKTDEGSR	67
Abl	(313)	KHPNLVQLLGVCTREPPFYII <u>**</u> EFMTYGNLLDYLRECNRQE	68
Btk	(473)	SHEKLVQLYGVCTKQRPIFII EEYMANGCLLNYLREMRHR	69
Csk	(244)	RHSNLVQLLGVIVEEKGGLYIV#EYMAKGSLVDYLRSRGRSV	70
PDGFR	(660)	PHLNVVNLLGACTKGGPIYII *EYCRYGDLVDYLHRNKHTF	71
38	(85)	GLLDVFTPARSLEEFNDVVLV#HLMGADLNNIVKCQKLTDD	72
ZAP-70	(394)	DNPYIVRLIGVCQAEALMLVMEMAGGGPLHKFL-VGKREE	73
JAK2	(906)	QHDNIVKYKGVCYSAGRRNLRLI <u>M</u> EYLPYGSLRDYLQKHKER	74
PKA	(99)	NFPFLVKLEFSFKDNSNLYMV <u>M</u> EYVPGGEMFSHLRRIGR	75
amK II	(68)	KHPNIVRLHDSISEEGHHYLI <u>#</u> DLVTGGELFEDIVAREY	76
dk2	(59)	NHPNIVKLLDVIHTENKLYLV	77

"Control" or "control experiment" is used in accordance with its plain ordinary meaning and refers to an experiment in which the subjects or reagents of the experiment are treated as in a parallel experiment except for omission of a procedure, reagent, or variable of the experiment. In some instances, the control is used as a standard of comparison in evaluating experimental effects.

"Contacting" is used in accordance with its plain ordinary meaning and refers to the process of allowing at least two distinct species (e.g. chemical compounds including biomolecules, or cells) to become sufficiently proximal to react, interact or physically touch. It should be appreciated, however, the resulting reaction product can be produced directly from a reaction between the added reagents or from an intermediate from one or more of the added reagents which can be produced in the reaction mixture. The term "contacting" includes incubating an inhibitor with the kinase.

As defined herein, the term "inhibition", "inhibit", "inhibiting" and the like in reference to a kinase-inhibitor interaraction means negatively affecting (e.g. decreasing) the activity of the kinase relative to the activity of the kinase in the absence of the inhibitor. Thus, inhibition includes, at least in part, partially or totally blocking stimulation, decreasing, preventing, or delaying activation, or inactivating, desensitizing, or down-regulating signal transduction. Similarly an "inhibitor" is a compound that inhibits kinase activity, e.g., by binding, partially or totally block stimulation, decrease, prevent, or delay activation, or inactivate, desensitize, or down-regulate signal transduction.

"Disease" or "condition" refer a state of being or health 30 status of a patient or subject capable of being treated with the compounds provided herein. Examples of disorders or conditions include, but are not limited to, cancer, cardiovascular disease, hypertension, Syndrome X, depression, anxiety, glaucoma, human immunodeficiency virus (HIV) or acquired 35 immunodeficiency syndrome (AIDS), neurodegeneration, Alzheimer's disease, Parkinson's disease, cognition enhancement, Cushing's Syndrome, Addison's Disease, osteoporosis, frailty, muscle frailty, inflammatory diseases, osteoarthritis, rheumatoid arthritis, asthma and rhinitis, adre- 40 nal function-related ailments, viral infection, immunodeficiency, immunomodulation, autoimmune diseases, allergies, wound healing, compulsive behavior, multi-drug resistance, addiction, psychosis, anorexia, cachexia, post-traumatic stress syndrome, post-surgical bone fracture, medical catabo- 45 lism, major psychotic depression, mild cognitive impairment, psychosis, dementia, hyperglycemia, stress disorders, antipsychotic induced weight gain, delirium, cognitive impairment in depressed patients, cognitive deterioration in individuals with Down's syndrome, psychosis associated with 50 interferon-alpha therapy, chronic pain, pain associated with gastroesophageal reflux disease, postpartum psychosis, postpartum depression, neurological disorders in premature infants, and migraine headaches. In some instances, "disease" or "condition" refer to cancer. In some further instances, 55 "cancer" refers to human cancers and carcinomas, sarcomas, adenocarcinomas, lymphomas, leukemias, etc., including solid and lymphoid cancers, kidney, breast, lung, bladder, colon, ovarian, prostate, pancreas, stomach, brain, head and neck, skin, uterine, testicular, glioma, esophagus, and liver 60 cancer, including hepatocarcinoma, lymphoma, including B-acute lymphoblastic lymphoma, non-Hodgkin's lymphomas (e.g., Burkitt's, Small Cell, and Large Cell lymphomas) and Hodgkin's lymphoma, leukemia (including AML, ALL, and CML), and multiple myeloma.

"Patient" or "subject in need thereof" refers to a living organism suffering from or prone to a condition that can be 18

treated by administration of a pharmaceutical composition as provided herein. Non-limiting examples include humans, other mammals and other non-mammalian animals.

Abbreviations used herein have their conventional meaning within the chemical and biological arts.

Where substituent groups are specified by their conventional chemical formulae, written from left to right, they equally encompass the chemically identical substituents that would result from writing the structure from right to left, e.g., —CH₂O— is equivalent to —OCH₂—.

As used herein, the symbol,

indicates the point of attachment of a substituents to the remainder of a molecule.

A "substituent group," as used herein, means a group selected from the following moieties:

(A) —OH, —NH₂, —SH, —CN, —CF₃, —NO₂, oxo, halogen, unsubstituted alkyl, unsubstituted heteroalkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, and

(B) alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl, substituted with at least one substituent selected from:

(i) oxo, —OH, —NH₂, —SH, —CN, —CF₃, —NO₂, halogen, unsubstituted alkyl, unsubstituted heteroalkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, and

(ii) alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl, substituted with at least one substituent selected from:

(a) oxo, —OH, —NH₂, —SH, —CN, —CF₃, —NO₂, halogen, unsubstituted alkyl, unsubstituted heteroalkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, and

(b) alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl, substituted with at least one substituent selected from oxo, —OH, —NH $_2$, —SH, —CN, —CF $_3$, —NO $_2$, halogen, unsubstituted alkyl, unsubstituted heteroalkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, and unsubstituted heteroaryl.

A "size-limited substituent" or "size-limited substituent group," as used herein means a group selected from all of the substituents described above for a "substituent group," wherein each substituted or unsubstituted alkyl is a substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted 2 to 20 membered heteroalkyl is a substituted or unsubstituted cycloalkyl is a substituted or unsubstituted $C_4\text{-}C_8$ cycloalkyl, and each substituted or unsubstituted heterocycloalkyl is a substituted or unsubstituted heterocycloalkyl.

A "lower substituent" or "lower substituent group," as used herein means a group selected from all of the substituents described above for a "substituent group," wherein each substituted or unsubstituted alkyl is a substituted or unsubstituted C_1 - C_8 alkyl, each substituted or unsubstituted heteroalkyl is a substituted or unsubstituted 2 to 8 membered heteroalkyl, each substituted or unsubstituted cycloalkyl is a substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted beterocycloalkyl is a substituted or unsubstituted 5 to 7 membered heterocycloalkyl.

The compounds of the present invention may exist as salts. The present invention includes such salts. Examples of applicable salt forms include hydrochlorides, hydrobromides, sulfates, methanesulfonates, nitrates, maleates, acetates, citrates, fumarates, tartrates (eg (+)-tartrates, (-)-tartrates or ⁵ mixtures thereof including racemic mixtures, succinates, benzoates and salts with amino acids such as glutamic acid. These salts may be prepared by methods known to those skilled in art. Also included are base addition salts such as sodium, potassium, calcium, ammonium, organic amino, or magnesium salt, or a similar salt. When compounds of the present invention contain relatively basic functionalities, acid addition salts can be obtained by contacting the neutral form of such compounds with a sufficient amount of the desired acid, either neat or in a suitable inert solvent. Examples of acceptable acid addition salts include those derived from inorganic acids like hydrochloric, hydrobromic, nitric, carbonic, monohydrogencarbonic, phosphoric, monohydrogengensulfuric, hydriodic, or phosphorous acids and the like, as well as the salts derived organic acids like acetic, propionic, isobutyric, maleic, malonic, benzoic, succinic, suberic, fumaric, lactic, mandelic, phthalic, benzenesulfonic, p-tolylsulfonic, citric, tartaric, methanesulfonic, and the like. Also 25 included are salts of amino acids such as arginate and the like, and salts of organic acids like glucuronic or galactunoric acids and the like. Certain specific compounds of the present invention contain both basic and acidic functionalities that allow the compounds to be converted into either base or acid addition salts.

The neutral forms of the compounds are preferably regenerated by contacting the salt with a base or acid and isolating the parent compound in the conventional manner. The parent form of the compound differs from the various salt forms in certain physical properties, such as solubility in polar sol-

Certain compounds of the present invention can exist in unsolvated forms as well as solvated forms, including 40 hydrated forms. In general, the solvated forms are equivalent to unsolvated forms and are encompassed within the scope of the present invention. Certain compounds of the present invention may exist in multiple crystalline or amorphous forms. In general, all physical forms are equivalent for the 45 uses contemplated by the present invention and are intended to be within the scope of the present invention.

Certain compounds of the present invention possess asymmetric carbon atoms (optical or chiral centers) or double bonds; the enantiomers, racemates, diastereomers, tau- 50 tomers, geometric isomers, stereoisometric forms that may be defined, in terms of absolute stereochemistry, as (R)- or (S)or, as (D)- or (L)- for amino acids, and individual isomers are encompassed within the scope of the present invention. The compounds of the present invention do not include those 55 which are known in art to be too unstable to synthesize and/or isolate. The present invention is meant to include compounds in racemic and optically pure forms. Optically active (R)- and (S)-, or (D)- and (L)-isomers may be prepared using chiral synthons or chiral reagents, or resolved using conventional 60 techniques. When the compounds described herein contain olefinic bonds or other centers of geometric asymmetry, and unless specified otherwise, it is intended that the compounds include both E and Z geometric isomers.

The term "tautomer," as used herein, refers to one of two or 65 more structural isomers which exist in equilibrium and which are readily converted from one isomeric form to another.

20

It will be apparent to one skilled in the art that certain compounds of this invention may exist in tautomeric forms, all such tautomeric forms of the compounds being within the scope of the invention.

Unless otherwise stated, structures depicted herein are also meant to include all stereochemical forms of the structure; i.e., the R and S configurations for each asymmetric center. Therefore, single stereochemical isomers as well as enantiomeric and diastereomeric mixtures of the present compounds are within the scope of the invention.

Unless otherwise stated, structures depicted herein are also meant to include compounds which differ only in the presence of one or more isotopically enriched atoms. For example, compounds having the present structures except for the replacement of a hydrogen by a deuterium or tritium, or the replacement of a carbon by ¹³C- or ¹⁴C-enriched carbon are within the scope of this invention.

The compounds of the present invention may also contain phosphoric, dihydrogenphosphoric, sulfuric, monohydro- 20 unnatural proportions of atomic isotopes at one or more of atoms that constitute such compounds. For example, the compounds may be radiolabeled with radioactive isotopes, such as for example tritium (3H), iodine-125 (125I) or carbon-14 (¹⁴C). All isotopic variations of the compounds of the present invention, whether radioactive or not, are encompassed within the scope of the present invention.

> The term "pharmaceutically acceptable salts" is meant to include salts of active compounds which are prepared with relatively nontoxic acids or bases, depending on the particular substituent moieties found on the compounds described herein. When compounds of the present invention contain relatively acidic functionalities, base addition salts can be obtained by contacting the neutral form of such compounds with a sufficient amount of the desired base, either neat or in a suitable inert solvent. Examples of pharmaceutically acceptable base addition salts include sodium, potassium, calcium, ammonium, organic amino, or magnesium salt, or a similar salt. When compounds of the present invention contain relatively basic functionalities, acid addition salts can be obtained by contacting the neutral form of such compounds with a sufficient amount of the desired acid, either neat or in a suitable inert solvent. Examples of pharmaceutically acceptable acid addition salts include those derived from inorganic acids like hydrochloric, hydrobromic, nitric, carbonic, monohydrogencarbonic, phosphoric, monohydrogenphosphoric, dihydrogenphosphoric, sulfuric, monohydrogensulfuric, hydriodic, or phosphorous acids and the like, as well as the salts derived from relatively nontoxic organic acids like acetic, propionic, isobutyric, maleic, malonic, benzoic, succinic, suberic, fumaric, lactic, mandelic, phthalic, benzenesulfonic, p-tolylsulfonic, citric, tartaric, methanesulfonic, and the like. Also included are salts of amino acids such as arginate and the like, and salts of organic acids like glucuronic or galactunoric acids and the like (see, for example, Berge et al., "Pharmaceutical Salts", Journal of Pharmaceutical Science, 1977, 66, 1-19). Certain specific compounds of the present invention contain both basic and acidic functionalities that allow the compounds to be converted into either base or acid addition salts.

> In addition to salt forms, the present invention provides compounds, which are in a prodrug form. Prodrugs of the compounds described herein are those compounds that readily undergo chemical changes under physiological conditions to provide the compounds of the present invention. Additionally, prodrugs can be converted to the compounds of the present invention by chemical or biochemical methods in an ex vivo environment. For example, prodrugs can be slowly

converted to the compounds of the present invention when placed in a transdermal patch reservoir with a suitable enzyme or chemical reagent.

The terms "a," "an," or "a(n)", when used in reference to a group of substituents herein, mean at least one. For example, 5 where a compound is substituted with "an" alkyl or aryl, the compound is optionally substituted with at least one alkyl and/or at least one aryl. Moreover, where a moiety is substituted with an R substitutent, the group may be referred to as "R-substituted." Where a moiety is R-substituted, the moiety is substituted with at least one R substituent and each R substituent is optionally different.

Description of compounds of the present invention are limited by principles of chemical bonding known to those skilled in the art. Accordingly, where a group may be substituted by one or more of a number of substituents, such substitutions are selected so as to comply with principles of chemical bonding and to give compounds which are not inherently unstable and/or would be known to one of ordinary skill in the art as likely to be unstable under ambient conditions, such as aqueous, neutral, and several known physiological conditions. For example, a heterocycloalkyl or heteroaryl is attached to the remainder of the molecule via a ring heteroatom in compliance with principles of chemical bonding known to those skilled in the art thereby avoiding inherently unstable compounds.

The terms "treating" or "treatment" refers to any indicia of success in the treatment or amelioration of an injury, pathology or condition, including any objective or subjective parameter such as abatement; remission; diminishing of 30 symptoms or making the injury, pathology or condition more tolerable to the patient; slowing in the rate of degeneration or decline; making the final point of degeneration less debilitating; improving a patient's physical or mental well-being. The treatment or amelioration of symptoms can be based on 35 objective or subjective parameters; including the results of a physical examination, neuropsychiatric exams, and/or a psychiatric evaluation. For example, the certain methods presented herein successfully treat cancer by decreasing the incidence of cancer and or causing remission of cancer.

An "effective amount" is an amount sufficient to contribute to the treatment, prevention, or reduction of a symptom or symptoms of a disease. An "effective amount" may also be referred to as a "therapeutically effective amount." A "reduction" of a symptom or symptoms (and grammatical equiva- 45 lents of this phrase) means decreasing of the severity or frequency of the symptom(s), or elimination of the symptom(s). A "prophylactically effective amount" of a drug is an amount of a drug that, when administered to a subject, will have the intended prophylactic effect, e.g., preventing or delaying the 50 onset (or reoccurrence) a disease, or reducing the likelihood of the onset (or reoccurrence) of a disease or its symptoms. The full prophylactic effect does not necessarily occur by administration of one dose, and may occur only after administration of a series of doses. Thus, a prophylactically effec- 55 tive amount may be administered in one or more administrations. An "activity decreasing amount," as used herein, refers to an amount of antagonist required to decrease the activity of an enzyme relative to the absence of the antagonist. A "function disrupting amount," as used herein, refers to the amount 60 of antagonist required to disrupt the function of an osteoclast or leukocyte relative to the absence of the antagonist.

As used herein, the phrase "ATP-binding pocket" refers to the active site of a kinase that binds ATP. The active site of the kinase where ATP binds is the set of amino acid residues that 65 are able to interact with and or bind to an ATP molecule or an ATP competitive inhibitor.

22

As used herein, the term "mutated" refers to a kinase with a non-natural (e.g. non-wild type) amino acid sequence. A mutated kinase is typically recombinant (e.g. engineered). In some embodiments as described below, the mutated kinase has a cysteine residue substitution at the gatekeeper amino acid position. As used herein, the term "unmutated" refers to the corresponding kinase wherein the mutation (e.g. a cysteine residue is substituted for a gatekeeper amino acid position) is not present (e.g. the natural or wild-type sequence). Thus, in some instances, unmutated refers to the wild-type or natural kinase. In some other instances, the corresponding kinase is another recombinant kinase having similar but distinct substitutions.

As used herein the term "not substantially lower" when referring to k_{cat} means that the k_{cat} is not less than a thousandth, i.e. $\frac{1}{1000}$, of the corresponding k_{cat} used for comparison. In some embodiments, the k_{at} is not less than a hundredth, i.e. $\frac{1}{100}$, of the corresponding k_{cat} used for comparison. In some instances, the k_{cat} is not less than a tenth, i.e. $\frac{1}{10}$, of the corresponding k_{cat} used for comparison. In some instances, the k_{cat} is not less than a quarter, i.e. $\frac{1}{4}$, of the corresponding k_{cat} used for comparison. In some instances, the k_{cat} is not less than half, i.e. $\frac{1}{2}$, of the corresponding k_{cat} used for comparison. For example, an engineered or mutated kinase may have a k_{cat} that is not substantially lower than the corresponding k_{cat} of the corresponding wild-type or natural or unmutated kinase.

As used herein the terms "not substantially lower" when referring to K_m means that the K_m is not less than a thousandth, i.e. $\frac{1}{1000}$, of the corresponding K_m used for comparison. In some embodiments, the K_m is not less than a hundredth, i.e. $\frac{1}{100}$, of the corresponding K_m used for comparison. In some instances, the K_m is not less than a tenth, i.e. $\frac{1}{10}$, of the corresponding K_m used for comparison. In some instances, the K_m is not less than a quarter, i.e. $\frac{1}{4}$, of the corresponding K_m used for comparison. In some instances, the K_m is not less than half, i.e. $\frac{1}{2}$, of the corresponding K_m used for comparison. For example, an engineered or mutated kinase may have a K_m that is not substantially lower than the corresponding K_m of the corresponding wild-type or natural or unmutated kinase.

"Disease" or "condition" refer a state of being or health status of a patient or subject capable of being treated with the compounds provided herein. Examples of disorders or conditions include, but are not limited to, cancer, cardiovascular disease, hypertension, Syndrome X, depression, anxiety, glaucoma, human immunodeficiency virus (HIV) or acquired immunodeficiency syndrome (AIDS), neurodegeneration, Alzheimer's disease, Parkinson's disease, cognition enhancement, Cushing's Syndrome, Addison's Disease, osteoporosis, frailty, muscle frailty, inflammatory diseases, osteoarthritis, rheumatoid arthritis, asthma and rhinitis, adrenal function-related ailments, viral infection, immunodeficiency, immunomodulation, autoimmune diseases, allergies, wound healing, compulsive behavior, multi-drug resistance, addiction, psychosis, anorexia, cachexia, post-traumatic stress syndrome, post-surgical bone fracture, medical catabolism, major psychotic depression, mild cognitive impairment, psychosis, dementia, hyperglycemia, stress disorders, antipsychotic induced weight gain, delirium, cognitive impairment in depressed patients, cognitive deterioration in individuals with Down's syndrome, psychosis associated with interferon-alpha therapy, chronic pain, pain associated with gastroesophageal reflux disease, postpartum psychosis, postpartum depression, neurological disorders in premature infants, and migraine headaches. In some instances, "disease" or "condition" refer to cancer. In some further instances,

"cancer" refers to human cancers and carcinomas, sarcomas, adenocarcinomas, lymphomas, leukemias, etc., including solid and lymphoid cancers, kidney, breast, lung, bladder, colon, ovarian, prostate, pancreas, stomach, brain, head and neck, skin, uterine, testicular, glioma, esophagus, and liver cancer, including hepatocarcinoma, lymphoma, including B-acute lymphoblastic lymphoma, non-Hodgkin's lymphomas (e.g., Burkitt's, Small Cell, and Large Cell lymphomas) and Hodgkin's lymphoma, leukemia (including AML, ALL, and CML), and multiple myeloma.

As used herein, the term "kinase-associated disease" refers to a disease or condition that is mediated, at least in part, by a kinase

As used herein, the term "Lrrk-2-associated disease" refers to a disease or condition that is mediated, at least in part, by a Lrrk-2 kinase.

As used herein, the term "cancer" refers to all types of cancer, neoplasm or malignant tumors found in mammals, including leukemia, carcinomas and sarcomas. Exemplary 20 cancers include cancer of the brain, breast, cervix, colon, head & neck, liver, kidney, lung, non-small cell lung, melanoma, mesothelioma, ovary, sarcoma, stomach, uterus and Mcdulloblastoma. Additional examples include, Hodgkin's Disease, Non-Hodgkin's Lymphoma, multiple myeloma, 25 neuroblastoma, ovarian cancer, rhabdomyosarcoma, primary thrombocytosis, primary macroglobulinemia, primary brain tumors, cancer, malignant pancreatic insulanoma, malignant carcinoid, urinary bladder cancer, premalignant skin lesions, testicular cancer, lymphomas, thyroid cancer, neuroblastoma, 30 esophageal cancer, genitourinary tract cancer, malignant hypercalcemia, endometrial cancer, adrenal cortical cancer, neoplasms of the endocrine and exocrine pancreas, and pros-

The term "leukemia" refers broadly to progressive, malig- 35 nant diseases of the blood-forming organs and is generally characterized by a distorted proliferation and development of leukocytes and their precursors in the blood and bone marrow. Leukemia is generally clinically classified on the basis of (1) the duration and character of the disease-acute or chronic; (2) 40 the type of cell involved; myeloid (myelogenous), lymphoid (lymphogenous), or monocytic; and (3) the increase or nonincrease in the number abnormal cells in the blood-leukemic or aleukemic (subleukemic). The P₃₈₈ leukemia model is widely accepted as being predictive of in vivo anti-leukemic 45 activity. It is believed that a compound that tests positive in the P₃₈₈ assay will generally exhibit some level of anti-leukemic activity in vivo regardless of the type of leukemia being treated. Accordingly, the present invention includes a method of treating leukemia, and, preferably, a method of treating 50 acute nonlymphocytic leukemia, chronic lymphocytic leukemia, acute granulocytic leukemia, chronic granulocytic leukemia, acute promyelocytic leukemia, adult T-cell leukemia, aleukemic leukemia, a leukocythemic leukemia, basophylic leukemia, blast cell leukemia, bovine leukemia, chronic 55 myelocytic leukemia, leukemia cutis, embryonal leukemia, eosinophilic leukemia, Gross' leukemia, hairy-cell leukemia, hemoblastic leukemia, hemocytoblastic leukemia, histiocytic leukemia, stem cell leukemia, acute monocytic leukemia, leukopenic leukemia, lymphatic leukemia, lymphoblastic 60 leukemia, lymphocytic leukemia, lymphogenous leukemia, lymphoid leukemia, lymphosarcoma cell leukemia, mast cell leukemia, megakaryocytic leukemia, micromyeloblastic leukemia, monocytic leukemia, myeloblastic leukemia, myelocytic leukemia, myeloid granulocytic leukemia, myelomono- 65 cytic leukemia, Naegeli leukemia, plasma cell leukemia, multiple myeloma, plasmacytic leukemia, promyelocytic

24

leukemia, Rieder cell leukemia, Schilling's leukemia, stem cell leukemia, subleukemic leukemia, and undifferentiated cell leukemia.

The term "sarcoma" generally refers to a tumor which is made up of a substance like the embryonic connective tissue and is generally composed of closely packed cells embedded in a fibrillar or homogeneous substance. Sarcomas which can be treated with a combination of antineoplastic thiol-binding mitochondrial oxidant and an anticancer agent include a chondrosarcoma, fibrosarcoma, lymphosarcoma, melanosarcoma, myxosarcoma, osteosarcoma, Abemethy's sarcoma, adipose sarcoma, liposarcoma, alveolar soft part sarcoma, ameloblastic sarcoma, botryoid sarcoma, chloroma sarcoma, chorio carcinoma, embryonal sarcoma, Wilms' tumor sarcoma, endometrial sarcoma, stromal sarcoma, Ewing's sarcoma, fascial sarcoma, fibroblastic sarcoma, giant cell sarcoma, granulocytic sarcoma, Hodgkin's sarcoma, idiopathic multiple pigmented hemorrhagic sarcoma, immunoblastic sarcoma of B cells, lymphoma, immunoblastic sarcoma of T-cells, Jensen's sarcoma, Kaposi's sarcoma, Kupffer cell sarcoma, angiosarcoma, leukosarcoma, malignant mesenchymoma sarcoma, parosteal sarcoma, reticulocytic sarcoma, Rous sarcoma, serocystic sarcoma, synovial sarcoma, and telangiectaltic sarcoma.

The term "melanoma" is taken to mean a tumor arising from the melanocytic system of the skin and other organs. Melanomas which can be treated with a combination of antineoplastic thiol-binding mitochondrial oxidant and an anticancer agent include, for example, acral-lentiginous melanoma, amelanotic melanoma, benign juvenile melanoma, Cloudman's melanoma, S91 melanoma, Harding-Passey melanoma, juvenile melanoma, lentigo maligna melanoma, malignant melanoma, nodular melanoma, subungal melanoma, and superficial spreading melanoma.

The term "carcinoma" refers to a malignant new growth made up of epithelial cells tending to infiltrate the surrounding tissues and give rise to metastases. Exemplary carcinomas which can be treated with a combination of antineoplastic thiol-binding mitochondrial oxidant and an anticancer agent include, for example, acinar carcinoma, acinous carcinoma, adenocystic carcinoma, adenoid cystic carcinoma, carcinoma adenomatosum, carcinoma of adrenal cortex, alveolar carcinoma, alveolar cell carcinoma, basal cell carcinoma, carcinoma basocellulare, basaloid carcinoma, basosquamous cell carcinoma, bronchioalveolar carcinoma, bronchiolar carcinoma, bronchogenic carcinoma, cerebriform carcinoma, cholangiocellular carcinoma, chorionic carcinoma, colloid carcinoma, comedo carcinoma, corpus carcinoma, cribriform carcinoma, carcinoma en cuirasse, carcinoma cutaneum, cylindrical carcinoma, cylindrical cell carcinoma, duct carcinoma, carcinoma durum, embryonal carcinoma, encephaloid carcinoma, epiermoid carcinoma, carcinoma epitheliale adenoides, exophytic carcinoma, carcinoma ex ulcere, carcinoma fibrosum, gelatiniformi carcinoma, gelatinous carcinoma, giant cell carcinoma, carcinoma gigantocellulare, glandular carcinoma, granulosa cell carcinoma, hair-matrix carcinoma, hematoid carcinoma, hepatocellular carcinoma, Hurthle cell carcinoma, hyaline carcinoma, hypemephroid carcinoma, infantile embryonal carcinoma, carcinoma in situ, intraepidermal carcinoma, intraepithelial carcinoma, Krompecher's carcinoma, Kulchitzky-cell carcinoma, largecell carcinoma, lenticular carcinoma, carcinoma lenticulare, lipomatous carcinoma, lymphoepithelial carcinoma, carcinoma medullare, medullary carcinoma, melanotic carcinoma, carcinoma molle, mucinous carcinoma, carcinoma muciparum, carcinoma mucocellulare, mucoepidermoid carcinoma, carcinoma mucosum, mucous carcinoma, carcinoma

myxomatodes, nasopharyngeal carcinoma, oat cell carcinoma, carcinoma ossificans, ostcoid carcinoma, papillary carcinoma, periportal carcinoma, preinvasive carcinoma, prickle cell carcinoma, pultaceous carcinoma, renal cell carcinoma of kidney, reserve cell carcinoma, carcinoma sarcomatodes, schneiderian carcinoma, scirrhous carcinoma, carcinoma scroti, signet-ring cell carcinoma, carcinoma simplex, small-cell carcinoma, solanoid carcinoma, spheroidal cell carcinoma, spindle cell carcinoma, carcinoma spongiosum, squamous carcinoma, squamous cell carcinoma, string carcinoma, carcinoma telangiectodes, transitional cell carcinoma, carcinoma tuberosum, tuberous carcinoma, verrucous carcinoma, and carcinoma villosum.

The term "pharmaceutically acceptable salts" is meant to include salts of the active compounds which are prepared with relatively nontoxic acids or bases, depending on the particular substituents found on the compounds described herein. When compounds of the present invention contain 20 relatively acidic functionalities, base addition salts can be obtained by contacting the neutral form of such compounds with a sufficient amount of the desired base, either neat or in a suitable inert solvent. Examples of pharmaceutically 25 acceptable base addition salts include sodium, potassium, calcium, ammonium, organic amino, or magnesium salt, or a similar salt. When compounds of the present invention contain relatively basic functionalities, acid addition salts can be obtained by contacting the neutral form of such compounds with a sufficient amount of the desired acid, either neat or in a suitable inert solvent. Examples of pharmaceutically acceptable acid addition salts include those derived from inorganic acids like hydrochloric, hydrobromic, nitric, car- 35 bonic, monohydrogencarbonic, phosphoric, monohydrogenphosphoric, dihydrogenphosphoric, sulfuric, monohydrogensulfuric, hydriodic, or phosphorous acids and the like, as well as the salts derived from relatively nontoxic organic 40 acids like acetic, propionic, isobutyric, maleic, malonic, benzoic, succinic, suberic, fumaric, lactic, mandelic, phthalic, benzenesulfonic, p-tolylsulfonic, citric, tartaric, methanesulfonic, and the like. Also included are salts of amino acids such as arginate and the like, and salts of organic acids like glucuronic or galactunoric acids and the like (see, for example, Berge et al., "Pharmaceutical Salts", Journal of Pharmaceutical Science, 1977, 66, 1-19). Certain specific compounds of the present invention contain both basic and 50 acidic functionalities that allow the compounds to be converted into either base or acid addition salts.

The neutral forms of the compounds are preferably regenerated by contacting the salt with a base or acid and isolating the parent compound in the conventional manner. The parent form of the compound differs from the various salt forms in certain physical properties, such as solubility in polar solvents.

In addition to salt forms, the present invention provides 60 compounds, which are in a prodrug form. Prodrugs of the compounds described herein are those compounds that readily undergo chemical changes under physiological conditions to provide the compounds of the present invention. Additionally, prodrugs can be converted to the compounds of 65 the present invention by chemical or biochemical methods in an ex vivo environment. For example, prodrugs can be slowly

26

converted to the compounds of the present invention when placed in a transdermal patch reservoir with a suitable enzyme or chemical reagent.

Certain compounds of the present invention can exist in unsolvated forms as well as solvated forms, including hydrated forms. In general, the solvated forms are equivalent to unsolvated forms and are encompassed within the scope of the present invention. Certain compounds of the present invention may exist in multiple crystalline or amorphous forms. In general, all physical forms are equivalent for the uses contemplated by the present invention and are intended to be within the scope of the present invention.

Certain compounds of the present invention possess asymmetric carbon atoms (optical centers) or double bonds; the racemates, diastereomers, geometric isomers and individual isomers are encompassed within the scope of the present invention.

The compounds of the present invention may also contain unnatural proportions of atomic isotopes at one or more of the atoms that constitute such compounds. For example, the compounds may be radiolabeled with radioactive isotopes, such as for example tritium (³H), iodine-125 (¹²⁵I) or carbon-14 (¹⁴C). All isotopic variations of the compounds of the present invention, whether radioactive or not, are encompassed within the scope of the present invention.

As used herein, the term "salt" refers to acid or base salts of the compounds used in the methods of the present invention. Illustrative examples of acceptable salts are mineral acid (hydrochloric acid, hydrobromic acid, phosphoric acid, and the like) salts, organic acid (acetic acid, propionic acid, glutamic acid, citric acid and the like) salts, quaternary ammonium (methyl iodide, ethyl iodide, and the like) salts.

As used herein, the term "isomers" refers to compounds having the same number and kind of atoms, and hence the same molecular weight, but differing in respect to the structural arrangement or configuration of the atoms.

As used herein, the term "tautomer," refers to one of two or more structural isomers which exist in equilibrium and which are readily converted from one isomeric form to another. III. Introduction

Provided herein are, inter alia, novel methods and compositions for inhibiting a protein kinase, e.g., a cysteine substituted kinase, determining the function of a protein kinase in a cell, and treating kinase-associated diseases and conditions. Certain heterocyclic compounds having an electrophilic substituent provided herein that specifically, and optionally irreversibly, inhibit cysteine substituted kinases. In some embodiments, the heterocyclic compound comprises two or more fused rings and an electrophilic substituent. In some embodiments, at least one of the two or more fused rings comprises a nitrogen atom. In some embodiments, the heterocyclic compounds inhibit a cysteine substituted kinase, i.e., a kinase having a cysteine residue in the gatekeeper position of the ATP binding site. In some embodiments, the heterocyclic compounds also inhibit a kinase not having a cysteine residue in the gatekeeper position (e.g. of the ATP binding site).

IV. Compounds

The present invention provides compounds suitable for use with the methods and assays described herein.

In some other embodiments, the heterocyclic compounds useful for inhibiting a kinase include two or more fused rings which include at least one heteroatom selected from N, O, or S. In some embodiments, the fused rings are substituted with a ring selected from substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, or substituted or unsubsti-

tuted heteroaryl. In some other embodiments, the cycloalkyl, heterocycloalkyl, aryl, or heteroaryl is substituted with a substitutent selected from substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl. In other embodiments, the ring which substitutes the fused rings is an aryl or heteroaryl. In some embodiments, the ring which substitutes the fused rings is an aryl. In some other embodiments, the ring which substitutes the fused rings is an aryl which is substituted with an electrophilic substituent that is capable of accepting electron density from a cysteine gate-keeper residue of a protein kinase. In some embodiments, the electrophilic substituent is capable of forming a covalent bond to the sulfhydryl group of the cysteine gate keeper residue.

In some embodiments, the compound is a substituted or unsubstituted phenyl-derivatized pyrazolopyrimidine, e.g. 3-phenyl-substituted pyrazolopyrimidines, having an electrophilic substituent. In some other embodiments, the present invention provides 3-phenyl-substituted pyrazolopyrimidines which are synthesized with an electrophilic groups at positions expected to be in close proximity to the gatekeeper residue. In some embodiments, compound is a substituted or 25 unsubstituted quinazoline having an electrophilic substituent. In some embodiments, compound is a substituted or unsubstituted 4-anilinoquinazoline, e.g. Michael acceptor-derivatized 4-anilinoquinazolines, having an electrophilic substituent. In some embodiments, the compound is a substituted or 30 unsubstituted benzyl-derivatized pyrazolopyrimidine having an electrophilic substituent. In some embodiments, the compound is a substituted or unsubstituted pyrazolopyrimidine having an electrophilic substituent pyrazolopyrimidine.

In some other embodiments, the electrophilic substituent is an electrophilic ATP-binding pocket moiety (i.e. a chemical moiety that interacts with amino acids that form part of the ATP-binding pocket). In other embodiments, the electrophilic substituent is a vinylsulfonamide, a vinylsulfone, an acrylamide, a chloroacetamide, an α -chloroacetamide, an α -epoxide, or a fluoromethylketones.

In some embodiments the compounds described herein are inhibitors of kinases ("kinase inhibitors") such as an inhibitor of a recombinant cysteine gatekeeper kinase ("cysteine gatekeeper kinase inhibitor"). In some other embodiments, the cysteine gatekeeper kinase inhibitor includes an ATP-binding pocket moiety (e.g. an ATP-binding pocket moiety including a heterocyclic moiety) covalently bound to an electrophilic moiety capable of binding the thiol of the gatekeeper cysteine residue of the cysteine gatekeeper kinase. In some embodiments, the inhibitor is one or more of the compounds set forth in Table 1 of Formulas (I) to (XXIX) (e.g. Formula (I) to (XIV)).

In some embodiments, the compounds has the formula:

$$(\mathbb{R}^{1}-\mathbb{L}^{1}) = \mathbb{I} \times \mathbb{I} \times$$

-continued

(II)
$$L^{4} \longrightarrow L^{3} - R^{3})_{b}$$

$$L^{2} - R^{2})_{c}; \text{ or}$$

$$R^{1} \longrightarrow L^{1} \longrightarrow R^{3}$$

$$(R^{1}-L^{1})_{a} \xrightarrow{\stackrel{N}{\coprod}} L^{5} \xrightarrow{\stackrel{\parallel}{\coprod}} (L^{2}-R^{2})_{c}.$$

each instance, independently cycloalkyl, heterocycloalkyl, aryl, or heteroaryl; L1, L2, L3, L4, L5, and L6 are, in each instance, independently selected from a bond, —C(O)—, $-C(O)N(R^7)$, -C(O)O, $-S(O)_g$ (i.e. -S, -S(O) or $-S(O)_2$), $-S(O)_2N(R^7)$, -O, $-N(R^7)$ —, $-N(R^7)C(O)N(R^8)$ —, substituted or unsubstituted alkylene, substituted or unsubstituted heteroalkylene, substituted or unsubstituted cycloalkylene, substituted or unsubstituted heterocycloalkylene, substituted or unsubstituted arylene, or substituted or unsubstituted heteroarylene, wherein g is independently an integer from 0 to 2; R^1 , R^2 , R^3 , R⁴, R⁵, R⁶, R⁷, and R⁸ are, in each instance, independently selected from hydrogen, halogen, —CN, —OH, —NH₂, -COOH, -CONH₂, -NO₂, -SH, -SO₂Cl, -SO₃H, -SO₄H, -SO₂NH₂, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl; a is an integer from 0 to 2; b is an integer from 0 to 5; and c is an integer from 0 to 4. In some embodiments, A is aryl (e.g. phenyl). In some embodiments, R⁷ is hydrogen. In some embodiments, R⁷ and R⁸ are hydrogen. R¹, R², R³, R⁴, R⁵, R⁶, R⁷, and R⁸ may also independently be hydrogen, halogen (e.g. —Cl or —F), —CN, -OH, -NH₂, -COOH, -CONH₂, -NO₂, -SH, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.

In some embodiments, R¹ is hydrogen, halogen, —CN, —OH, —NH₂, —COOH, —CONH₂, —NO₂, —SH, 55 —SO₂Cl, —SO₃H, —SO₄H, —SO₂NH₂, R⁰-substituted or unsubstituted alkyl, R⁰-substituted or unsubstituted heteroalkyl, R⁰-substituted or unsubstituted heteroaryl.

R^{9°} is independently halogen, —CN, —OH, —NH₂, —COOH, —CONH₂, —NO₂, —SH, —SO₂Cl, —SO₃H, —SO₄H, —SO₂NH₂, R¹⁰-substituted or unsubstituted alkyl, R¹⁰-substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted heteroalkyl, R¹⁰-substituted or unsubstituted heterocycloalkyl, R¹⁰-substituted or unsubstituted aryl, or R¹⁰-substituted or unsubstituted heteroaryl.

R¹⁰ is independently halogen, —CN, —OH, —NH₂, -COOH, $-CONH_2$, $-NO_2$, -SH, $-SO_2Cl$, $-SO_3H$, -SO₄H, —SO₂NH₂, R¹¹-substituted or unsubstituted alkyl, R¹¹-substituted or unsubstituted heteroalkyl, R¹¹-substituted or unsubstituted cycloalkyl, R¹¹-substituted or unsubstituted heterocycloalkyl, R¹¹-substituted or unsubstituted aryl, or R¹¹-substituted or unsubstituted heteroaryl.

In some embodiments, R² is hydrogen, halogen, —CN, —OH, —NH₂, —COOH, —CONH₂, —NO₂, —SH, —SO₂Cl, —SO₃H, —SO₄H, —SO₂NH₂, R¹²-substituted or unsubstituted alkyl, R12-substituted or unsubstituted heteroalkyl, R¹²-substituted or unsubstituted cycloalkyl, R¹²substituted or unsubstituted heterocycloalkyl, R12-substituted or unsubstituted aryl, or R12-substituted or 15 unsubstituted heteroaryl.

R¹² is independently halogen, —CN, —OH, —NH₂, —COOH, —CONH₂, —NO₂, —SH, —SO₂Cl, —SO₃H, -SO₄H, —SO₂NH₂, R¹³-substituted or unsubstituted alkyl, or unsubstituted cycloalkyl, R13-substituted or unsubstituted heterocycloalkyl, R13-substituted or unsubstituted aryl, or R¹³-substituted or unsubstituted heteroaryl.

R¹³ independently is halogen, —CN, —OH, —NH₂, -COOH, --CONH₂, --NO₂, --SH, --SO₂Cl, --SO₃H, 25 $-SO_4H$, $-SO_2NH_2$, R^{14} -substituted or unsubstituted alkyl, R¹⁴-substituted or unsubstituted heteroalkyl, R¹⁴-substituted or unsubstituted cycloalkyl, R14-substituted or unsubstituted heterocycloalkyl, R¹⁴-substituted or unsubstituted aryl, or R¹⁴-substituted or unsubstituted heteroaryl.

In some embodiments, R³ hydrogen, is halogen, —CN, -OH, -NH₂, -COOH, -CONH₂, -NO₂, -SH, -SO₂Cl, -SO₃H, -SO₄H, -SO₂NH₂, R^{15} -substituted or unsubstituted alkyl, R15-substituted or unsubstituted heteroalkyl, R¹⁵-substituted or unsubstituted cycloalkyl, R¹⁵- 35 substituted or unsubstituted heterocycloalkyl, R15-substituted or unsubstituted aryl, or R15-substituted or unsubstituted heteroaryl.

R¹⁵ is independently halogen, —CN, —OH, —NH₂, -COOH, $-CONH_2$, $-NO_2$, -SH, $-SO_2Cl$, $-SO_3H$, 40 -SO₄H, —SO₂NH₂, R¹⁶-substituted or unsubstituted alkyl, R¹⁶-substituted or unsubstituted heteroalkyl, R¹⁶-substituted or unsubstituted cycloalkyl, R¹⁶-substituted or unsubstituted heterocycloalkyl, R16-substituted or unsubstituted aryl, or R¹⁶-substituted or unsubstituted heteroaryl.

R16 is independently halogen, -CN, -OH, -NH2, -COOH, $-CONH_2$, $-NO_2$, -SH, $-SO_2Cl$, $-SO_3H$, -SO₄H, —SO₂NH₂, R¹⁷-substituted or unsubstituted alkyl, R¹⁷-substituted or unsubstituted heteroalkyl, R¹⁷-substituted or unsubstituted cycloalkyl, R17-substituted or unsubstituted 50 heterocycloalkyl, R¹⁷-substituted or unsubstituted aryl, or R¹⁷-substituted or unsubstituted heteroaryl.

In some embodiments, R⁴ is hydrogen, halogen, —CN, -OH, -NH₂, -COOH, -CONH₂, -NO₂, -SH, -SO₂Cl, -SO₃H, -SO₄H, -SO₂NH₂, R¹⁸-substituted or 55 unsubstituted alkyl, R¹⁸-substituted or unsubstituted heteroalkyl, R¹⁸-substituted or unsubstituted cycloalkyl, R¹⁸substituted or unsubstituted heterocycloalkyl, R¹⁸-substituted or unsubstituted aryl, or R18-substituted or unsubstituted heteroaryl.

R¹⁸ independently is halogen, —CN, —OH, —NH₂, -COOH, -CONH₂, -NO₂, -SH, -SO₂Cl, -SO₃H, $-SO_4H$, $-SO_2NH_2$, R^{19} -substituted or unsubstituted alkyl, R¹⁹-substituted or unsubstituted heteroalkyl, R¹⁹-substituted or unsubstituted cycloalkyl, R¹⁹-substituted or unsubstituted heterocycloalkyl, R19-substituted or unsubstituted aryl, or R¹⁹-substituted or unsubstituted heteroaryl.

R¹⁹ is independently halogen, —CN, —OH, —NH₂, —COOH, —CONH₂, —NO₂, —SH, —SO₂Cl, —SO₃H, $-SO_4H$, $-SO_2NH_2$, R^{20} -substituted or unsubstituted alkyl, R²⁰-substituted or unsubstituted heteroalkyl, R²⁰-substituted or unsubstituted cycloalkyl, R²⁰-substituted or unsubstituted heterocycloalkyl, R²⁰-substituted or unsubstituted aryl, or R²⁰-substituted or unsubstituted heteroaryl.

In some embodiments, R⁵ is hydrogen, halogen, —CN, -OH, -NH₂, -COOH, -CONH₂, -NO₂, -SH, —SO₂Cl, —SO₃H, —SO₄H, —SO₂NH₂, R²¹-substituted or unsubstituted alkyl, R21-substituted or unsubstituted heteroalkyl, R²¹-substituted or unsubstituted cycloalkyl, R²¹substituted or unsubstituted heterocycloalkyl, R²¹-substituted or unsubstituted aryl, or R²¹-substituted or unsubstituted heteroaryl.

R²¹ is independently halogen, —CN, —OH, —NH₂, -COOH, -CONH₂, -NO₂, -SH, -SO₂Cl, -SO₃H, $-SO_4H$, $-SO_2NH_2$, R^{22} -substituted or unsubstituted alkyl, R^H-substituted or unsubstituted heteroalkyl, R¹³-substituted 20 R²²-substituted or unsubstituted heteroalkyl, R²²-substituted or unsubstituted cycloalkyl, R²²-substituted or unsubstituted heterocycloalkyl, R²²-substituted or unsubstituted aryl, or R²²-substituted or unsubstituted heteroaryl.

> R²² is independently halogen, —CN, —OH, —NH₂, -COOH, -CONH₂, -NO₂, -SH, -SO₂Cl, -SO₃H, $-SO_4H$, $-SO_2NH_2$, R^{23} -substituted or unsubstituted alkyl, R²³-substituted or unsubstituted heteroalkyl, R²³-substituted or unsubstituted cycloalkyl, R23-substituted or unsubstituted heterocycloalkyl, R²³-substituted or unsubstituted aryl, or R²³-substituted or unsubstituted heteroaryl.

> In some embodiments, R⁶ is hydrogen, halogen, —CN, unsubstituted alkyl, R24-substituted or unsubstituted heteroalkyl, R²⁴-substituted or unsubstituted cycloalkyl, R²⁴substituted or unsubstituted heterocycloalkyl, R24-substituted or unsubstituted aryl, or R²⁴-substituted or unsubstituted heteroaryl.

R²⁴ is independently halogen, —CN, —OH, —NH₂, -COOH, -CONH₂, -NO₂, -SH, -SO₂Cl, -SO₃H, -SO₄H, —SO₂NH₂, R²⁵-substituted or unsubstituted alkyl, R²⁵-substituted or unsubstituted heteroalkyl, R²⁵-substituted or unsubstituted cycloalkyl, R²⁵-substituted or unsubstituted heterocycloalkyl, R25-substituted or unsubstituted aryl, or R²⁵-substituted or unsubstituted heteroaryl.

R²⁵ is independently halogen, —CN, —OH, —NH₂, -COOH, -CONH₂, -NO₂, -SH, -SO₂Cl, -SO₃H, -SO₄H, —SO₂NH₂, R²⁶-substituted or unsubstituted alkyl, R²⁶-substituted or unsubstituted heteroalkyl, R²⁶-substituted or unsubstituted cycloalkyl, R²⁶-substituted or unsubstituted heterocycloalkyl, R²⁶-substituted or unsubstituted aryl, or R²⁶-substituted or unsubstituted heteroaryl.

In some embodiments, R⁷ is hydrogen, halogen, —CN, unsubstituted alkyl, R²⁷-substituted or unsubstituted heteroalkyl, R²⁷-substituted or unsubstituted cycloalkyl, R²⁷substituted or unsubstituted heterocycloalkyl, R²⁷-substituted or unsubstituted aryl, or R²⁷-substituted or 60 unsubstituted heteroaryl.

R²⁷ is independently halogen, —CN, —OH, —NH₂, -COOH, --CONH₂, --NO₂, --SH, --SO₂Cl, --SO₃H, $-SO_4H$, $-SO_2NH_2$, R^{28} -substituted or unsubstituted alkyl, R²⁸-substituted or unsubstituted heteroalkyl, R²⁸-substituted or unsubstituted cycloalkyl, R²⁸-substituted or unsubstituted heterocycloalkyl, R²⁸-substituted or unsubstituted aryl, or R²⁸-substituted or unsubstituted heteroaryl.

R²⁸ is independently halogen, —CN, —OH, —NH₂, —COOH, —CONH₂, —NO₂, —SH, —SO₂Cl, —SO₃H, —SO₄H, —SO₂NH₂, R²⁹-substituted or unsubstituted alkyl, R²⁹-substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted heterocycloalkyl, R²⁹-substituted or unsubstituted heterocycloalkyl, R²⁹-substituted or unsubstituted aryl, or R²⁹-substituted or unsubstituted aryl.

In some embodiments, R⁸ is hydrogen, halogen, —CN, —OH, —NH₂, —COOH, —CONH₂, —NO₂, —SH, —SO₂Cl, —SO₃H, —SO₄H, —SO₂NH₂, R³⁰-substituted or unsubstituted alkyl, R³⁰-substituted or unsubstituted heteroalkyl, R³⁰-substituted or unsubstituted heteroaryl.

R³⁰ is independently halogen, —CN, —OH, —NH₂, —COOH, —CONH₂, —NO₂, —SH, —SO₂Cl, —SO₃H, —SO₄H, —SO₂NH₂, R³¹-substituted or unsubstituted alkyl, R³¹-substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted heterocycloalkyl, R³¹-substituted or unsubstituted heterocycloalkyl, R³¹-substituted or unsubstituted aryl, or R³¹-substituted or unsubstituted aryl, or R³¹-substituted or unsubstituted heterocycloalkyl.

R³¹ is independently halogen, —CN, —OH, —NH₂, —COOH, —CONH₂, —NO₂, —SH, —SO₂Cl, —SO₃H, 25 —SO₄H, —SO₂NH₂, R³²-substituted or unsubstituted alkyl, R³²-substituted or unsubstituted or unsubstituted or unsubstituted heterocycloalkyl, R³²-substituted or unsubstituted heterocycloalkyl, R³²-substituted or unsubstituted aryl, or R³²-substituted or unsubstituted aryl, 30

In some embodiments, R¹¹, R¹⁴, R¹⁷, R²⁰, R²³, R²⁶, R²⁹, and R³² are independently hydrogen, halogen, —CN, —OH, —NH₂, —COOH, —CONH₂, —NO₂, —SH, —SO₂Cl, —SO₃H, —SO₄H, —SO₂NH₂, unsubstituted alkyl, unsubstituted heteroalkyl, unsubstituted cycloalkyl, unsubstituted heteroaryl, unsubstituted heteroaryl.

In some embodiments, L^1 is in each instance, independently selected from a bond, -C(O)—, $-C(O)N(R^7)$ —, -C(O)O—, -S(O)_g—, -S(O)₂ $N(R^7)$ —, -O—, 40 $-N(R^7)$ —, $-N(R^7)$ Č $(O)N(R^8)$ —, R^{33} -substituted or unsubstituted alkylene, R^{33} -substituted or unsubstituted arylene, R^{33} -substituted or unsubstituted arylene, or R^{33} -substituted or unsubstituted arylene, or R^{33} -substituted or unsubstituted arylene, or R^{33} -substituted or unsubstituted arylene.

R³³ is independently halogen, —CN, —OH, —NH₂, —COOH, —CONH₂, —NO₂, —SH, —SO₂Cl, —SO₃H, —SO₄H, —SO₂NH₂, R³⁴-substituted or unsubstituted alkyl, R³⁴-substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted heterocycloalkyl, R³⁴-substituted or unsubstituted heterocycloalkyl, R³⁴-substituted or unsubstituted aryl, or R³⁴-substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted heterocycloalkyl, R³⁴-substituted heterocycloalkyl, R³⁴-substituted heterocycloalkyl, R³⁴-substituted or unsubstituted aryl, or R³⁴-substituted or unsubstituted heterocycloalkyl, R³⁴-substituted heterocycloalkyl, R³⁴

R³⁴ is independently halogen, —CN, —OH, —NH₂, —COOH, —CONH₂, —NO₂, —SH, —SO₂Cl, —SO₃H, 55 —SO₄H, —SO₂NH₂, R³⁵-substituted or unsubstituted alkyl, R³⁵-substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted heterocycloalkyl, R³⁵-substituted or unsubstituted heterocycloalkyl, R³⁵-substituted or unsubstituted aryl, or R³⁵-substituted or unsubstituted heteroaryl.

In some embodiments, L^2 is in each instance, independently selected from a bond, -C(O)—, $-C(O)N(R^7)$ —, -C(O)O—, $-S(O)_g$ — (i.e. -S—, -S(O)— or $-S(O)_2$), $-S(O)_2N(R^7)$ —, -O—, $-N(R^7)$ —, $-N(R^7)C(O)N(R^8)$ —, R^{36} -substituted or unsubstituted alkylene, R^{36} -substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted

heterocycloalkylene, R³⁶-substituted or unsubstituted arylene, or R³⁶-substituted or unsubstituted heteroarylene.

R³⁶ is independently halogen, —CN, —OH, —NH₂, —COOH, —CONH₂, —NO₂, —SH, —SO₂Cl, —SO₃H, —SO₄H, —SO₂NH₂, R³⁷-substituted or unsubstituted alkyl, R³⁷-substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted heterocycloalkyl, R³⁷-substituted or unsubstituted heterocycloalkyl, R³⁷-substituted or unsubstituted aryl, or R³⁷-substituted or unsubstituted heteroaryl.

R³⁷ is independently halogen, —CN, —OH, —NH₂, —COOH, —CONH₂, —NO₂, —SH, —SO₂Cl, —SO₃H, —SO₄H, —SO₂NH₂, R³⁸-substituted or unsubstituted alkyl, R³⁸-substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted heteroalkyl, R³⁸-substituted or unsubstituted heterocycloalkyl, R³⁸-substituted or unsubstituted aryl, or R³⁸-substituted or unsubstituted heteroaryl.

In some embodiments, L^3 is in each instance, independently selected from a bond, -C(O)—, $-C(O)N(R^7)$ —, -C(O)O—, $-S(O)_g$ — (i.e. -S—, -S(O)— or $-S(O)_2$), $-S(O)_2N(R^7)$ —, -O—, $-N(R^7)$ —, $-N(R^7)C(O)N(R^8)$ —, R^{39} -substituted or unsubstituted alkylene, R^{39} -substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted arylene, or R^{39} -substituted or unsubstituted arylene, or R^{39} -substituted or unsubstituted arylene, or R^{39} -substituted heteroarylene.

R³⁹ is independently halogen, —CN, —OH, —NH₂, —COOH, —CONH₂, —NO₂, —SH, —SO₂Cl, —SO₃H, —SO₄H, —SO₂NH₂, R⁴⁰-substituted or unsubstituted alkyl, R⁴⁰-substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted heterocycloalkyl, R⁴⁰-substituted or unsubstituted aryl, or R⁴⁰-substituted or unsubstituted aryl, or R⁴⁰-substituted or unsubstituted heterocycloalkyl.

R⁴⁰ is independently halogen, —CN, —OH, —NH₂, —COOH, —CONH₂, —NO₂, —SH, —SO₂Cl, —SO₃H, —SO₄H, —SO₂NH₂, R⁴¹-substituted or unsubstituted alkyl, R⁴¹-substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted heteroalkyl, R⁴¹-substituted or unsubstituted heterocycloalkyl, R⁴¹-substituted or unsubstituted aryl, or R⁴¹-substituted or unsubstituted heteroaryl.

In some embodiments, L⁴ is in each instance, independently selected from a bond, —C(O)—, —C(O)N(R⁷)—, —C(O)O—, —S(O)_g— (i.e. —S—, —S(O)— or —S(O)₂), —S(O)₂N(R⁷)—, —O—, —N(R⁷)—, —N(R⁷)C(O)N (R⁸)—, R³⁹-substituted or unsubstituted alkylene, R⁴²-substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted heterocycloalkylene, R⁴²-substituted or unsubstituted arylene, or R⁴²-substituted or unsubstituted arylene, or R⁴²-substituted or unsubstituted arylene.

R⁴² is independently halogen, —CN, —OH, —NH₂, —COOH, —CONH₂, —NO₂, —SH, —SO₂Cl, —SO₃H, —SO₄H, —SO₂NH₂, R⁴³-substituted or unsubstituted alkyl, R⁴³-substituted or unsubstituted aryl, or R⁴³-substituted or unsubstituted aryl, or R⁴³-substituted or unsubstituted heteroaryl.

R⁴³ is independently halogen, —CN, —OH, —NH₂, —COOH, —CONH₂, —NO₂, —SH, —SO₂Cl, —SO₃H, —SO₄H, —SO₂NH₂, R⁴⁴-substituted or unsubstituted alkyl, R⁴⁴-substituted or unsubstituted or unsubstituted or unsubstituted heterocycloalkyl, R⁴⁴-substituted or unsubstituted heterocycloalkyl, R⁴⁴-substituted or unsubstituted aryl, or R⁴⁴-substituted or unsubstituted heterocycloalkyl, R⁴⁴-substituted heterocy

In some embodiments, L^5 is in each instance, independently selected from a bond, -C(O)—, $-C(O)N(R^7)$ —, -C(O)O—, $-S(O)_g$ — (i.e. -S—, -S(O)— or $-S(O)_2$), $-S(O)_2N(R^7)$ —, -O—, $-N(R^7)$ —, $-N(R^7)C(O)N$

(R⁸)—, R⁴⁵-substituted or unsubstituted alkylene, R⁴⁵-substituted or unsubstituted heteroalkylene, R⁴⁵-substituted or unsubstituted cyclo alkylene, R⁴⁵-substituted or unsubstituted heterocycloalkylene, R⁴⁵-substituted or unsubstituted arylene, or R⁴⁵-substituted or unsubstituted heteroarylene.

R⁴⁵ is independently halogen, —CN, —OH, —NH₂, —COOH, —CONH₂, —NO₂, —SH, —SO₂Cl, —SO₃H, —SO₄H, —SO₂NH₂, R⁴⁶-substituted or unsubstituted alkyl, R⁴⁶-substituted or unsubstituted heterocycloalkyl, R⁴⁶-substituted or unsubstituted aryl, or R⁴⁶-substituted or unsubstituted heteroaryl.

 $\begin{array}{lll} R^{46} & is & independently & halogen, & --CN, & --OH, & --NH_2, \\ --COOH, & --CONH_2, & --NO_2, & --SH, & --SO_2CI, & --SO_3H, \\ --SO_4H, & --SO_2NH_2, & R^{47} - substituted or unsubstituted alkyl, \\ R^{47} - substituted or unsubstituted heteroalkyl, & R^{47} - substituted or unsubstituted or unsubstituted heterocycloalkyl, & R^{47} - substituted or unsubstituted aryl, or \\ R^{47} - substituted or unsubstituted heteroaryl. \end{array}$

In some embodiments, L^6 is in each instance, independently selected from a bond, -C(O)-, $-C(O)N(R^7)-$, -C(O)O-, $-S(O)_g-$ (i.e. -S-, -S(O)- or $-S(O)_2$), $-S(O)_2N(R^7)-$, -O-, $-N(R^7)-$, $-N(R^7)C(O)N(R^8)-$, R^{48} -substituted or unsubstituted alkylene, R^{48} -substituted or unsubstituted or unsubstituted or unsubstituted heterocycloalkylene, R^{48} -substituted or unsubstituted arylene, or R^{48} -substituted or unsubstituted arylene, or R^{48} -substituted or unsubstituted arylene.

R⁴⁸ is independently halogen, —CN, —OH, —NH₂, —COOH, —CONH₂, —NO₂, —SH, —SO₂Cl, —SO₃H, —SO₄H, —SO₂NH₂, R⁴⁹-substituted or unsubstituted alkyl, R⁴⁹-substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted heteroalkyl, R⁴⁹-substituted or unsubstituted heterocycloalkyl, R⁴⁹-substituted or unsubstituted aryl, or R⁴⁹-substituted or unsubstituted heteroaryl.

 R^{49} is independently halogen, —CN, —OH, —NH $_2$, —COOH, —CONH $_2$, —NO $_2$, —SH, —SO $_2$ Cl, —SO $_3$ H, 40 —SO $_4$ H, —SO $_2$ NH $_2$, R^{50} -substituted or unsubstituted alkyl, R^{50} -substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted heterocycloalkyl, R^{50} -substituted or unsubstituted heterocycloalkyl, R^{50} -substituted or unsubstituted aryl, or R^{50} -substituted or unsubstituted aryl, or R^{50} -substituted or unsubstituted heterocycloalkyl, R^{50} -substituted hetero

In some embodiments, R³⁵, R³⁸, R⁴¹, R⁴⁴, R⁴⁷ and R⁵⁰ are independently hydrogen, unsubstituted alkyl, unsubstituted heteroalkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, or unsubstituted heteroaryl.

In some other embodiments, the compounds have the formula (where the variables are as described above):

$$(R^{1}-L^{1})\frac{N}{a} = \begin{pmatrix} 1 & 1 & 1 \\ & & & \\$$

-continued

$$(V)$$

$$L^{4}$$

$$(L^{3}-R^{3})_{b}$$

$$(L^{2}-R^{2})_{c}; \text{ or }$$

$$(V)$$

$$(VI)$$

$$(R^{1}-L^{1})_{a}$$

$$N$$

$$N$$

$$L^{5}$$

$$(L^{2}-R^{2})_{c}$$

In certain embodiments, L^1 , L^2 , L^3 , L^4 , L^5 , and L^6 are, in each instance, independently a bond, —NH—, or substituted or unsubstituted C_1 - C_5 alkylene. In certain other embodiments, L^6 is a bond, —NH—, or unsubstituted C_1 - C_5 alkylene.

In some other embodiments, the compounds have the formula (where the variables are as described above):

$$(R^{1}-L^{1})\frac{N}{a}\frac{1}{\|L\|}$$

$$N$$

$$L^{2}$$

$$R^{2}$$

$$(R^{1}-L^{1})\frac{N}{a}\frac{1}{\|L\|}$$

$$N$$

$$L^{2}$$

$$R^{2}$$

$$R^{2}$$

$$(R^{1}-L^{1}\frac{N}{a}\frac{N}{\|l\|}N$$

$$L^{2}$$

$$R^{2}$$

$$(IX)$$

-continued

-continued (X)

$$(R^1-L^1)\frac{1}{a}\frac{1}{k}$$
 $(R^1-L^1)\frac{1}{a}\frac{1}{k}$
 $(R^1-L^1)\frac{1}{a}\frac{1}{k}$
 $(R^1-L^1)\frac{1}{a}\frac{1}{k}$
 $(R^1-L^1)\frac{1}{a}\frac{1}{k}$
 $(R^1-L^1)\frac{1}{a}\frac{1}{k}$
 $(R^1-L^1)\frac{1}{a}\frac{1}{k}$
 (XII)
 $(XIII)$
 $(XIII)$

In certain embodiments, at least one -L³-R³ is an electrophilic ₅₅ moiety (e.g. -L³-R³ is or includes an electrophilic moiety). For example, in some embodiments, -L³-R³ forms an electrophilic moiety. In other embodiments, one of L³ or R³ is an electrophilic moiety (e.g. one of L3 or R3 is or includes an electrophilic moiety). In some embodiments, L^3 forms an 60 electrophilic moiety. In other embodiments, R³ forms an electrophilic moiety. In certain other embodiments, L³ is a bond, —NH—, substituted or unsubstituted alkylene, or substituted or unsubstituted heteroalkylene; and R³ is a substituted or 65 unsubstituted alkyl, substituted or unsubstituted heteroalkyl, or halogen. In some of the embodiments, L3 is —C(O)—,

 $-S(O)_2$, -NHC(O), or $-NHS(O)_2$. R^3 may be a substituted or unsubstituted alkyl (e.g. substituted or unsubstituted C₁ to C₅ alkyl). For example, R³ may be an unsubstituted alkyl or alkyl substituted with chloro, fluoro, methyl, difluoromethyl, or trifluoromethyl. In other embodiments, R³ is ethenyl, ethyl, 2,2,2-trichloroethyl, 2,2-dichloroethyl, 2-chloroethyl, 2,2,2-trifluoroethyl, 2,2-difluoroethyl, or 2-fluoroethyl, propyl, isopropyl, 1-propenyl, or 2-propenyl.

In some embodiments, the compounds suitable for use with the present invention have the structure of one of the formula cited herein wherein -L³-R³ is:

$$CF_{2}H;$$

$$CF_{2}H;$$

$$CF_{2}H;$$

$$CF_{2}H;$$

$$CF_{2}H;$$

$$CF_{2}H;$$

$$CF_{2}H;$$

$$CF_{2}H;$$

$$CF_{2}H;$$

$$CF_{3};$$

$$CF_{2}H;$$

$$CF_{2}H;$$

$$CF_{3};$$

$$CF_{4}H;$$

$$CF_{5}H;$$

$$C$$

In some other embodiments, the compounds suitable for use with the present invention include those wherein L^1 is a bond. R¹ may be hydrogen or NH₂. In certain embodiments, L¹ is a bond; and R¹ is hydrogen. In certain other embodiments, L^1 is a bond; and R^1 is NH_2 . In some embodiments, the present invention provides a compound where L^2 is a bond; and R² is methyl, ethyl, propyl, isopropyl, butyl, tert-butyl, pentyl, cyclopentyl, hexyl, cyclohexyl, methoxy, ethoxy, propoxy, or butoxy. In certain embodiments, R² is isopropyl or cyclopentyl. In other embodiments, R² is isopropyl. In other embodiments, R² is cyclopentyl. In some other embodiments, R² is methoxy. In certain embodiments, c is 2; L² is a bond, and R² is methoxy, ethoxy, propoxy, or butoxy. In other embodiments, R² is methoxy.

In some embodiments, the present invention provides compounds that have:

-continued

In some other embodiments, the present invention provides a compound having the below formula (which are useful inter alia, as inhibitors of Lrrk-2 kinases):

$$(XV)$$

$$L^{4} \qquad A \qquad (L^{3}-R^{3})_{b} \qquad \qquad 20$$

$$L^{1} \qquad (L^{2}-R^{2})_{c}; \qquad \qquad 25$$

 X^1 and X^2 are, in each instance, independently =N- or 30 =C(-L⁶-R⁶)—. Ring A is, in each instance, independently selected from cycloalkyl, heterocycloalkyl, aryl, or heteroaryl. L¹, L², L³, and L⁴ are as defined above (e.g., in each instance, independently selected from a bond, -C(O)-, $-C(O)N(R^7)$, -C(O)O, $-S(O)_g$, $-S(O)_2N(R^7)$, 35 -O-, $-N(R^7)$ -, $-N(R^7)C(O)N(R^8)$ -), substituted or unsubstituted alkylene, substituted or unsubstituted heteroalkylene, substituted or unsubstituted cycloalkylene, substituted or unsubstituted heterocycloalkylene, substituted or unsubstituted arylene, or substituted or unsubstituted heteroarylene, wherein g is an integer from 0 to 2). R¹, R², R³, R^6 , R^7 , and R^8 are as defined above (e.g., in each instance, independently selected from hydrogen, halogen, -CN, unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl). The variable b is as defined above (e.g. an integer from 0 to 5; and c is as defined above (e.g. an integer from 0 to 4).

In some embodiments, the present invention provides a compound having the formula:

$$(XVI)$$

$$(H)$$

$$(R)$$

$$(R$$

55

-continued (XVII)
$$\begin{pmatrix} H \\ N - R^3 \end{pmatrix}_b;$$

$$\begin{pmatrix} H \\ N - R^3 \end{pmatrix}_b$$

(XVIII)
$$\begin{array}{c}
N \\
N \\
N
\end{array}$$

$$\begin{array}{c}
N \\
N \\
N
\end{array}$$

$$\begin{array}{c}
N \\
N \\
N
\end{array}$$

$$\begin{array}{c} & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

$$\begin{array}{c} & & & \\ & &$$

$$\begin{array}{c} O \\ N \\ N \\ N \end{array}$$

In some other embodiments, the compound provided herein has the formula (with the variables as defined above):

50

-continued

$$O = S R^{3}$$

$$O = NH$$

$$NH$$

$$10$$

$$R^{1} L^{1}$$

$$N$$

$$15$$

$$O = S R^{3};$$

$$O = NH$$

$$NH$$

$$O = NH$$

O
$$\mathbb{R}^3$$
 (XXVI)

55

 \mathbb{R}^1 \mathbb{L}^1 \mathbb{N} \mathbb{R}^3 (55)

(XXVII)

$$R^{1}$$
 L^{1}
 N
 R^{3} ;

$$\begin{array}{c} & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

$$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & \\ & &$$

In other embodiments, the present invention provides compounds having the formula in the table below ("Table 1"):

In certain embodiments, L³ is selected from a bond, —NH—,—C(O)—,—S(O₂)—, substituted or unsubstituted alkylene, or substituted or unsubstituted heteroalkylene. R³ may be selected from substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, or halogen. In other embodiments, R³ is methyl; difluoromethyl; trifluoromethyl; ethenyl; ethyl; 2,2,2-trifluoroethyl; 2,2-dichloroethyl; 2-chloroethyl; 2,2,2-trifluoroethyl; 2-fluoroethyl; propyl; isopropyl; 1-propenyl; 2-propenyl; butyl; tert-butyl; napthyl; thiophene; 2-chloro-thiophene; phenyl; 2-methyl-phenyl; 3-methyl-phenyl; 4-methyl-phenyl; 2-phenyl-phenyl; 3-phenyl-phenyl; 4-phenyl-phenyl 2-chloro-thiophene; or 3-chloro-thiophene.

As described above, the term "inhibitor" may refer to an inhibitor of a recombinant kinase comprising a cysteine substitution at a gatekeeper amino acid position (i.e. a cysteine gatekeeper kinase inhibitor) and includes a compound described herein such as the compound of Formulae (I) to (XIV). In some embodiments, the inhibitors are able to covalently bind to cysteine. In some other embodiments, the inhibitors inhibit the kinase by bonding to the sulfylhydryl group of the cysteine residue at the gatekeeper amino acid position. In some embodiments, a compound provided herein may be a Lrrk-2 kinase inhibitor. In some embodiments, the Lrrk-2 kinase inhibitor is one or more of the compounds set forth in Table Z and/or a compound of Formula (XV) to (XXIX).

A person having ordinary skill in the art would immediately take into account the widely known principles of chemical when considering the description of compounds provided herein. Accordingly, where a group may be substituted by one or more of a number of substituents, such substitutions are selected so as to comply with principles of chemical bonding and to give compounds which are not inherently unstable and/or would be known to one of ordinary skill in the art as likely to be unstable under ambient conditions, such as aqueous, or neutral conditions.

It will be apparent to one skilled in the art that certain compounds of this invention may exist in tautomeric forms, all such tautomeric forms of the compounds being within the scope of the invention.

Unless otherwise stated, structures depicted herein are also 5 meant to include compounds which differ only in the presence of one or more isotopically enriched atoms. For example, compounds having the present structures except for the replacement of a hydrogen by a deuterium or tritium, the replacement of a carbon by ¹³C- or ¹⁴C-enriched carbon, or 10 the replacement of an iodine by ¹²⁵I, are within the scope of this invention. All isotopic variations of the compounds of the present invention, whether radioactive or not, are encompassed within the scope of the present invention.

The compounds of the present invention also include the 15 salts, hydrates, solvates and prodrug forms. The compounds of the present invention also include the isomers and metabolites of those described in Formula (I)-(XXIX).

Salts include, but are not limited, to sulfate, citrate, acetate, oxalate, chloride, bromide, iodide, nitrate, bisulfate, phosphate, acid phosphate, phosphonic acid, isonicotinate, lactate, salicylate, citrate, tartrate, oleate, tannate, pantothenate, bitartrate, ascorbate, succinate, maleate, gentisinate, fumarate, gluconate, glucaronate, saccharate, formate, benzoate, glutamate, methanesulfonate, ethanesulfonate, benzenesulfonate, p-toluenesulfonate, and pamoate (i.e., 1,1'-methylene-bis-(2-hydroxy-3-naphthoate)) salts. Other salts include, but are not limited to, salts with inorganic bases including alkali metal salts such as sodium salts, and potassium salts; alkaline earth metal salts such as calcium salts, and magnesium salts; aluminum salts; and ammonium salts. Other salts with organic bases include salts with diethylamine, diethanolamine, meglumine, and N,N'-dibenzylethylenediamine.

The neutral forms of the compounds can be regenerated by contacting the salt with a base or acid and isolating the parent 35 compound in the conventional manner. The parent form of the compound differs from the various salt forms in certain physical properties, such as solubility in polar solvents, but otherwise the salts are equivalent to the parent form of the compound for the purposes of the present invention.

Certain compounds of the present invention can exist in unsolvated forms as well as solvated forms, including hydrated forms. In general, the solvated forms are equivalent to unsolvated forms and are encompassed within the scope of the present invention. Certain compounds of the present 45 invention may exist in multiple crystalline or amorphous forms. In general, all physical forms are equivalent for the uses contemplated by the present invention and are intended to be within the scope of the present invention.

Certain compounds of the present invention possess asymmetric carbon atoms (optical centers) or double bonds; the enantiomers, racemates, diastereomers, tautomers, geometric isomers, stereoisometric forms that may be defined, in terms of absolute stereochemistry, as (R)- or (S)- or, as (D)- or (L)-for amino acids, and individual isomers are encompassed 55 within the scope of the present invention. The compounds of the present invention do not include those which are known in art to be too unstable to synthesize and/or isolate. The present invention is meant to include compounds in racemic and optically pure forms. Optically active (R)- and (S)-, or (D)- and (L)-isomers may be prepared using chiral synthons or chiral reagents, or resolved using conventional techniques.

The present invention also provides compounds which are in a prodrug form. Prodrugs of the compounds described herein are those compounds that readily undergo chemical changes under physiological conditions to provide the compounds of the present invention. Additionally, prodrugs can

50

be converted to the compounds of the present invention by chemical or biochemical methods in an ex vivo environment. For example, prodrugs can be slowly converted to the compounds of the present invention when placed in a transdermal patch reservoir with a suitable enzyme or chemical reagent.

In some embodiments, each substituted group described above for the compounds of the present invention is substituted with at least one substituent group. More specifically, in some embodiments, each substituted alkyl, substituted heteroalkyl, substituted cycloalkyl, substituted heterocycloalkyl, substituted aryl, substituted heteroaryl, substituted or unsubstituted alkylene, substituted or unsubstituted heteroalkylene, substituted or unsubstituted cycloalkylene, substituted or unsubstituted heterocycloalkylene, substituted or unsubstituted arylene or substituted or unsubstituted heteroarylene described above is substituted with at least one substituent group. In other embodiments, at least one or all of these groups are substituted with at least one size-limited substituent group. Alternatively, at least one or all of these groups are substituted with at least one lower substituent group.

In other embodiments of the compounds described above, each substituted or unsubstituted alkyl is a substituted or unsubstituted C₁-C₂₀ alkyl, each substituted or unsubstituted alkylene is a substituted or unsubstituted C₁-C₂₀ alkylene, each substituted or unsubstituted heteroalkyl is a substituted or unsubstituted 2 to 20 membered heteroalkyl, each substituted or unsubstituted heteroalkylene is a substituted or unsubstituted 2 to 20 membered heteroalkylene, each substituted or unsubstituted cycloalkyl is a substituted or unsubstituted C₃-C₈ cycloalkyl, each substituted or unsubstituted cycloalkylene is a substituted or unsubstituted C3-C8 cycloalkylene, each substituted or unsubstituted heterocycloalkyl is a substituted or unsubstituted 4 to 8 membered heterocycloalkyl, each substituted or unsubstituted heterocycloalkylene is a substituted or unsubstituted 4 to 8 membered heterocycloalkylene, each substituted or unsubstituted aryl is a substituted or unsubstituted C₆ or C₈ aryl, each substituted or unsubstituted arylene is a substituted or unsubstituted C₆ or C₈ arylene, each substituted or unsubstituted heteroaryl is a substituted or unsubstituted C5 or C6 heteroaryl, and each substituted or unsubstituted heteroarylene is a substituted or unsubstituted C_5 or C_6 heteroarylene.

Alternatively, each substituted or unsubstituted alkyl is a substituted or unsubstituted $\rm C_1\text{-}C_8$ alkyl, each substituted or unsubstituted $\rm C_1\text{-}C_8$ alkylene, each substituted or unsubstituted $\rm C_1\text{-}C_8$ alkylene, each substituted or unsubstituted heteroalkyl is a substituted or unsubstituted 2 to 8 membered heteroalkyl, each substituted or unsubstituted heteroalkylene is a substituted or unsubstituted cycloalkyl is a substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted cycloalkyl, each substituted or unsubstituted cycloalkyl is a substituted or unsubstituted $\rm C_3\text{-}C_6$ cycloalkylene, each substituted or unsubstituted heterocycloalkylene, each substituted or unsubstituted heterocycloalkylene is a substituted or unsubstituted heterocycloalkylene is a substituted or unsubstituted 3 to 6 membered heterocycloalkylene.

5 V. Kinases

In some embodiments, the present invention provides a recombinant kinase comprising a cysteine substitution at a

gatekeeper amino acid position (also referred to as a "cysteine gatekeeper kinase", a "recombinant kinase of the present invention" or a "recombinant kinase set forth herein"). For example, the recombinant kinase can comprise a sequence having a cysteine substitution at the position corresponding to Thr338 of c-Src, such as the positions shown for SEQ ID NOs:58-77, and sequences having substantial identity thereto. That is, the recombinant kinase can comprise a sequence having at least about 85, 90, 92, 93, 94, 95, 96, 97, 98, or 99% identity to a sequence of any one of SEQ ID NOs:58-77, with a cysteine substitution at the position corresponding to Thr338 of c-Src.

In some embodiments, the recombinant kinase can have a sequence of SEQ ID NO:2 (T338C c-Src), or a sequence having substantial identity thereto. In some embodiments the recombinant kinase can comprise a sequence having at least about 85, 90, 92, 93, 94, 95, 96, 97, 98, or 99% identity to the sequence of SEQ ID NO:2 with a cysteine at the position corresponding to 338 (with reference to the full length $_{20}$ sequence of SEQ ID NO:3). In some embodiments, the recombinant kinase comprises less than the full length of SEQ ID NO:2 or 3 (and substantially identical variants thereof), but retains the cysteine substitution at the position corresponding to amino acid 338 of SEQ ID NO:3. In some $^{\,25}$ embodiments, the recombinant kinase comprises at least 8, 10, 12, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 120, 150, 175, 200 or more contiguous amino acids of SEQ ID NO:2 or a substantially identical sequence over that span retaining a cysteine at the amino acid position corresponding to 338 of SEQ ID NO:3.

In some embodiments, the recombinant kinase can have a sequence of any one of SEQ ID NOs:24-45 or a sequence having substantial identity thereto. These kinase sequences 35 have a naturally occurring gatekeeper cysteine, i.e. a cysteine at the position corresponding to amino acid 338 in c-Src (SEQ ID NO:2 shows the T338C c-Src, while SEQ ID NO:4 shows the wild type T338 c-Src sequence). In some embodiments the recombinant kinase can comprise a sequence having at least about 85, 90, 92, 93, 94, 95, 96, 97, 98, or 99% identity to the sequence of any one of SEQ ID NOs:24-45 with a cysteine at the position corresponding to amino acid 338 of c-Src. In some embodiments, the recombinant kinase com- 45 prises less than the full length of any one of SEQ ID NOs:24-45 (and substantially identical variants thereof), but retains the cysteine at the position corresponding to amino acid 338 of c-Src. In some embodiments, the recombinant kinase comprises at least 8, 10, 12, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 120, 150, 175, 200 or more contiguous amino acids of any one of SEQ ID NOs:24-45 or a substantially identical sequence over that span retaining a cysteine at the position corresponding to 338 of SEQ ID NO:2.

In some other embodiments, the recombinant kinase has a k_{cat} activity that is not substantially lower than the k_{cat} activity of the corresponding wild-type kinase. In some embodiments, the k_{cat} activity that is not substantially lower than the k_{cat} activity of the corresponding wild-type kinase. In some embodiments, the recombinant kinase has a K_m binding affinity for ATP of the recombinant kinase is not substantially lower than the K_m binding affinity for ATP of the corresponding wild type kinase. In some embodiments, the K_m binding affinity for ATP of the recombinant kinase is not substantially lower than the K_m binding affinity for ATP of the correspond-

52

ing wild type kinase. The activity is considered "not substantially lower" when the activity is not less than 5-fold less, e.g., 4-fold, 3-fold, or 2-fold less than the reference kinase. In some cases, the term "not substantially lower" is determined in terms of percentage, and a not substantially lower activity is at least 50% of the reference kinase, e.g. higher than 50% of the activity of a wild type kinase. In some embodiments, the activity is 60, 70, 75, 80, 85, 90, 95% or higher of the activity of the reference kinase.

The present invention provides methods for evaluating the use of a cysteine gatekeeper kinase.

In some embodiments, the recombinant kinase includes a recombinant kinase is selected from Src (e.g., c-Src (SEQ ID NOs:2-23 or 59) or v-Src (SEQ ID NO: 46-50 or 58); MOK; Sgk494; Yak/Yrk; SRPK1; CDK; DICTY-I; PAK/STE20; or Ctrl/DPYK1 with a cysteine at the gatekeeper position (at the amino acid position corresponding to 338 of the c-Src protein of SEQ ID NO:3. In some embodiments, the recombinant kinase is a recombinant Src and the gatekeeper amino acid position is T338.

In some embodiments, the recombinant kinase has a greater catalytic efficiency than the corresponding wild type kinase. For example, the kinase activity is greater than 100% of the reference kinase (e.g., wild type c-Src of SEQ ID NO:3). In some embodiments, the activity is 1.2-fold, 1.5-fold, 1.8-fold, 2-fold, 2.5-fold, 3-fold, 4-fold, 5-fold, 10-fold or higher than the reference. In some embodiments, the catalytic efficiency is measured as the ratio of k_{cat}/K_m .

In some embodiments, the recombinant kinase further comprises an additional amino acid substitution corresponding to position V323 of c-Src (see, e.g., SEQ ID NOs:10-23). That is, the recombinant kinase can be a cysteine gatekeeper kinase, i.e., comprising a sequence having substantial identity to any one of SEQ ID NOs:2-77 with a cysteine at the position corresponding to amino acid 338 of SEQ ID NO:3, and additionally include a substitution at the position corresponding to amino acid 323 of SEQ ID NO:3. One of skill will understand that the positions corresponding to those of SEQ ID NO:3 can be ascertained for other kinase sequences.

In some embodiments, the recombinant kinase further comprises an additional amino acid substitution corresponding to the position M314 of c-Src, e.g. to gly (G) or ala (A). For example, the recombinant kinase can be a cysteine gate-keeper kinase, i.e., comprising a sequence having substantial identity to any one of SEQ ID NOs:2-77 with a cysteine at the position corresponding to amino acid 338 of SEQ ID NO:3, and additionally include a substitution at the position corresponding to amino acid 314 of SEQ ID NO:3. One of skill will understand that the positions corresponding to those of SEQ ID NO:3 can be ascertained for other kinase sequences.

In some embodiments, the recombinant kinase includes substitutions at two or all three positions corresponding to positions 338, 314 and 323 of c-Src (SEQ ID NO:3). In some embodiments, the recombinant kinase comprises a sequence having substantial identity to SEQ ID NO:2 with a C at the position corresponding to amino acid 338 of c-Src (the full length sequence of SEQ ID NO:3), and also has a substitution at the position corresponding to amino acid 314 of c-Src. In some embodiments, the recombinant kinase comprises a sequence having substantial identity to SEQ ID NO:2 with a C at the position corresponding to amino acid 338 (of the full

length sequence of SEQ ID NO:3), and also has a substitution at the position corresponding to amino acid 323 of c-Src. In some embodiments, the recombinant kinase comprises a sequence having substantial identity to SEQ ID NO:2 with a C at the position corresponding to amino acid 338 of c-Src (the full length sequence of SEQ ID NO:3), and also has a substitution at the positions corresponding to amino acids 314 and 323 of c-Src. Again, one of skill will be able to determine the corresponding amino acid positions for kinases with 10 sequences that are not perfectly aligned with c-Src.

In some embodiments, the cysteine gatekeeper kinase has an additional amino acid substitution of alanine (A) or serine (S) at the position corresponding to V323 of c-Src (V323A $_{15}$ (c-Src-ES2)] or V323S (c-Src-ES3). In some other embodiments, the recombinant kinase having an additional amino acid substitution at VAL323 has a greater catalytic efficiency of the corresponding recombinant kinase that does not have an additional amino acid substitution at VAL323. In some 20 embodiments, the catalytic efficiency is measured as the ratio of k_{cat}/K_{m} .

In some embodiments, the corresponding substitutions can be performed in other kinases. A person having ordinary skill in the art would understand which amino acids correspond to VAL 323 in other kinases.

In some embodiments, the present invention provides methods and compositions for modifying the microenvironment around the cysteine gatekeeper by alteration of one nearby residue (e.g. Val323) in order to impact inhibitor potency. For example, liberating additional space with a V323A mutation resulted in a 5-fold increase in potency for 13, while the V3232S mutation had a 12-fold effect. In some embodiments, the present invention provides methods of boosting potency which may allow dosing levels sufficient to substantially minimize off-target effects with MOK kinase (the effects due to MOK inhibition can be taken into account by comparing effects in WT vs. ES expressing cells).

A. Forming a Kinase

In some other embodiments, the present invention provides a method of forming a recombinant kinase described herein, wherein the method includes transforming a cell with a nucleic acid encoding a recombinant kinase described herein, thereby forming a recombinant kinase described herein. In some embodiments, the recombinant kinase is selected from Src; MOK; Sgk494; Lrrk-2; Yak/Yrk; SRPK1; CDK; DICTY-I; PAK/STE20; or Ctrl/DPYK1 as described herein.

B. Structure Activity Relationship Studies—Inhibition of Src

In some embodiment, the present invention provides a series of 3-phenyl-substituted pyrazolopyrimidines with electrophilic groups at positions expected to be in close proximity to the gatekeeper residue and as set forth in Table 1. In some other embodiments, the electrophiles include meta and para substituents of the 3-phenyl ring and vinylsulfonamides as well as acrylamides and chloroacetamides. A meta-substituted vinylsulfonamide, 3 inhibited T338C relative to WT c-Src (>9-fold increase), while a para-substituted version, 5, elicited a ~6-fold improvement (Table 1). Acrylamides (1) and chloroacetamides (6) were also shown to be inhibitors. Under the assay conditions used (10 min preincubation with 65 inhibitor prior to addition of ATP) IC_{50} values under 5 μ M for either 2 or 4 for WT or T338C c-Src were not shown.

TABLE 1

$$R^{d}$$
 R^{d}
 R^{d}
 $R^{d'}$
 $R^{d'}$
 $R^{d'}$
 $R^{d'}$
 $R^{d'}$
 $R^{d'}$

Com- pound	n	\mathbb{R}^a	\mathbb{R}^b	\mathbb{R}^c	\mathbb{R}^d	WT c-Src IC ₅₀ (nM)	T338C c-Src IC ₅₀ (nM)
1	0	iPr	NH_2	NHCOCHCH ₂	Н	2319	419
2	0	iPr	H	NHCOCHCH ₂	H	>5000	>5000
3	0	iPr	NH_2	NHSO ₂ CHCH ₂	H	1004	111
4	0	iPr	Η	NHSO ₂ CHCH ₂	H	>5000	>5000
5	0	iPr	NH_2	H	NHSO ₂ CHCH ₂	899	145
6	0	iPr	NH_2	NHCOCH ₂ Cl	H	>5000	817
7	1	iPr	NH_2	NHCOCHCH ₂	H	>5000	2762
8	1	iPr	NH_2	H	NHCOCHCH ₂	>5000	>5000
9	1	iPr	NH_2	NHSO ₂ CHCH ₂	H	>5000	150
10	1	iPr	NH_2	H	NHSO ₂ CHCH ₂	3083	1759
11	1	iPr	NH_2	NHSO ₂ CH ₂ CH ₃	H	>5000	3497
12	1	iPr	NH_2	NHCOCH ₂ Cl	H	>5000	>5000
13	1	iPr	NH_2	COCH ₂ F	H	>5000	338
14	1	iPr	NH_2	$COCH_3$	H	>5000	4520
15	1	Me	NH_2	NHSO ₂ CHCH ₂	H	>5000	3161
16	1	tBu	NH_2	NHSO ₂ CHCH ₂	H	>5000	618
17	1	Ср	NH ₂	NHSO ₂ CHCH ₂	Н	>5000	196
Com- pound				R°	\mathbb{R}^{d_i}		

	pound	R^{c_1}	\mathbb{R}^{d_i}		
_	18	NHCOCHCH ₂	Н	>5000	1661
	19	NHSO ₂ CHCH ₂	H	>5000	1004
	20	H	$\mathrm{NHSO_{2}CHCH_{2}}$	2170	560

 IC_{50} values for electrophile derivatized pyrazolopyrimidines and 4-anilinoquinazolines against WT c-Src and T338C c-Src. Scaffolds are depicted such that the hinge-binding element is located on the left. Note that for covalent inhibitors IC_{50} values are time-dependent. In these assays, the inhibitors were preincubated with the Src for ten minutes prior to assay initialization by addition of ATP.

An array of 3-benzyl-substituted pyrazolopyrimidines modified with electrophiles or isosteric and unreactive negative control groups at the meta and para positions were synthesized and screened against WT and T338C c-Src (compounds 7-17, Table 1). The benzyl functionalized compounds inhibitored wild type c-Src (IC $_{50}$ values >5 μ M). Compound, 9, which is functionalized with a vinylsulfonamide, exhibited an IC $_{50}$ value of 150 nM. An unreactive control compound 11 resulted in a 23-fold drop in potency. A fluoromethylketone bearing compound, 13, yielded an IC $_{50}$ value of 338 nM, which was >13-fold more potent than the corresponding ketone, 14.

The present invention also provides methods of determining the activity effects of modifying the N1 position of pyrazolopyrimidines by a structure activity relationship (SAR). In some embodiments, this includes using the pyrazolopyrimi-

dine scaffold with a benzyl-linked m-vinylsulfonamide, see compounds 9, 15-17; Table 1 This analysis revealed that secondary alkyl groups such as isopropyl (9) and cyclopentyl (17) moieties inhibit T338C c-Src. These results indicate that substitution at N1 can be used to modulate potency against T338C c-Src. Accordingly, the present invention provides methods of modulating the potency against kinases, such as c-Src.

The present invention provides methods and compositions that are suitable for use with a variety of kinases, e.g. recombinant, wild type, natural, mutant, and unmutated. In some embodiments, these kinases include c-Src, Src: Src; MOK; Sgk494; Yak/Yrk; SRPK1; CDK; DICTY-I; PAK/STE20; or Ctrl/DPYK1.

In some embodiments, the recombinant kinases described herein include an approximate 15 residue His tag in addition to the sequence for the actual protein, e.g. linker and heptamer for specific TEV protein cutting. In some instances TEV may be cut at residue 248, 249, or 250. It is understood by those in the art that the DNA sequence can be optimized with respect to the code or sequence without affecting the primary protein encoded thereby.

The following sets forth gatekeeper residues. In some embodiments, the gatekeeper residue is cysteine. In some embodiments the kinase is natural, wild type, or recombinant.

As described herein, a Cys gatekeeper is an attractive target for the inhibitory compounds described herein. Representative kinases having a naturally occurring Cys at the gatekeeper position include the entries of Table 2 following. As customary in the art, the terms "GI: number," "GI: No." and the like refer to a unique sequence identifier (i.e., "GenBank Identifier") for a sequence.

TABLE 2

SEQ ID NO:	GI: No.	Species
24	4587987	Arabidopsis thaliana
25	19424095	Arabidopsis thaliana
26	1785621	Arabidopsis thaliana
27	4678270	Arabidopsis thaliana
28	4678272	Arabidopsis thaliana
29	4678273	Arabidopsis thaliana
30	4678277	Arabidopsis thaliana
31	4886274	Arabidopsis thaliana
32	3047095	Arabidopsis thaliana
33	334188021	Arabidopsis thaliana
34	9294588	Arabidopsis thaliana
35	11120792	Arabidopsis thaliana
36	11120796	Arabidopsis thaliana
37	8777331	Arabidopsis thaliana
38	7106391	Mus musculus
39	1705720	Carassius auratus
40	6648996	Capsicum annuum
41	7630151	Leishmania major
42	5139689	Homo sapiens
43	486948	Trichomonas vaginalis
44	254688446	Plasmodium falciparum
45	13509297	Dictyostelium discoideum

VI. Co-Crystals of Kinase and a Compound

The present invention provides co-crystals of a kinase and a compound, e.g. co-crystal structure of T338C c-Src with a vinylsulfonamide-derivatized pyrazolopyrimidine inhibitor 60 is provided, see Example 34.

In the 9-c-Src-ES1 co-crystal structure, the pyrazolopyrimidine pharmacophore interacts with the backbone amides of Glu339 and Met341 of the hinge region (FIG. **2**A). The oxygen atoms of the sulfonamide hydrogen bond directly to the 65 backbone amide of Asp404 and to that of Phe405 via a water molecule (FIG. **2**B, C). Additionally, the nitrogen of the sul-

56

fonamide makes a direct hydrogen bond to the side chain Glu310 (FIGS. 2A, C). In crystal structures of wild type Src, the hydroxyl of the gatekeeper threonine is often directed towards the C4-exocyclic amine of the adenine portion of ATP mimetics.

In the 9 c-Src-ES1 co-crystal structure, the sulfhydryl of Cys338 adopts a distinct rotamer to accommodate the bulky C-3 benzyl group and facilitate a covalent bond (FIG. 2C).

The flexible ethylsulfonamide moiety is situated to allow the covalent linkage with Cys338 (FIG. 2B). The side chain of Met314, a critical component of the hydrophobic spine, is dramatically shifted relative to its position in other c-Src structures (FIGS. 2B, C). Movement of Met314 may prevent a steric clash with the ethylsulfonamide moiety of 9.

5 VII. Pharmaceutical Compositions

In some embodiments, the present invention provides a pharmaceutical composition comprising a compound as set forth herein (e.g. a compound of Formula (I)-(XXIX)) and a pharmaceutically acceptable excipient.

"Pharmaceutically acceptable excipient" and "pharmaceutically acceptable carrier" refer to a substance that aids the administration of an active agent to and absorption by a subject and can be included in the compositions of the present invention without causing a significant adverse toxicological effect on the patient. Non-limiting examples of pharmaceutically acceptable excipients include water, NaCl, normal saline solutions, lactated Ringer's, normal sucrose, normal glucose, binders, fillers, disintegrants, lubricants, coatings, sweeteners, flavors and colors, and the like. One of skill in the art will recognize that other pharmaceutical excipients are useful in the present invention.

The compounds and compositions of the present invention can be prepared and administered in a wide variety of oral, parenteral and topical dosage forms. Oral preparations _ 35 include tablets, pills, powder, dragees, capsules, liquids, lozenges, cachets, gels, syrups, slurries, suspensions, etc., suitable for ingestion by the patient. The compounds of the present invention can also be administered by injection, that is, intravenously, intramuscularly, intracutaneously, subcuta-40 neously, intraduodenally, or intraperitoneally. Also, the compounds described herein can be administered by inhalation, for example, intranasally. Additionally, the compounds and compositions of the present invention can be administered transdermally. The GR modulators of this invention can also 45 be administered by intraocular, intravaginal, and intrarectal routes including suppositories, insufflation, powders and aerosol formulations (for examples of steroid inhalants, see Rohatagi, J. Clin. Pharmacol. 35:1187-1193, 1995; Tjwa, Ann. Allergy Asthma Immunol. 75:107-111, 1995). Accord-50 ingly, the present invention also provides pharmaceutical compositions including a pharmaceutically acceptable carrier or excipient and either a compound of Formula I, or a pharmaceutically acceptable salt of a compound of Formula I.

For preparing pharmaceutical compositions from the compounds of the present invention, pharmaceutically acceptable carriers can be either solid or liquid. Solid form preparations include powders, tablets, pills, capsules, cachets, suppositories, and dispersible granules. A solid carrier can be one or more substances, which may also act as diluents, flavoring agents, binders, preservatives, tablet disintegrating agents, or an encapsulating material. Details on techniques for formulation and administration are well described in the scientific and patent literature, see, e.g., the latest edition of Remington's Pharmaceutical Sciences, Maack Publishing Co, Easton Pa. ("Remington's").

In powders, the carrier is a finely divided solid, which is in a mixture with the finely divided active component. In tablets,

the active component is mixed with the carrier having the necessary binding properties in suitable proportions and compacted in the shape and size desired. The powders and tablets preferably contain from 5% or 10% to 70% of the active compound.

Suitable solid excipients include, but are not limited to, magnesium carbonate; magnesium stearate; talc; pectin; dextrin; starch; tragacanth; a low melting wax; cocoa butter; carbohydrates; sugars including, but not limited to, lactose, sucrose, mannitol, or sorbitol, starch from corn, wheat, rice, 10 potato, or other plants; cellulose such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethyl-cellulose; and gums including arabic and tragacanth; as well as proteins including, but not limited to, gelatin and collagen. If desired, disintegrating or solubilizing agents may be added, 15 such as the cross-linked polyvinyl pyrrolidone, agar, alginic acid, or a salt thereof, such as sodium alginate.

Dragee cores are provided with suitable coatings such as concentrated sugar solutions, which may also contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene 20 glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound (i.e., dosage). Pharmaceutical preparations of the 25 invention can also be used orally using, for example, push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating such as glycerol or sorbitol. Push-fit capsules can contain GR modulator mixed with a filler or binders such as lactose or starches, lubricants such as 30 talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, the GR modulator compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycol with or without stabilizers.

For preparing suppositories, a low melting wax, such as a 35 mixture of fatty acid glycerides or cocoa butter, is first melted and the active component is dispersed homogeneously therein, as by stirring. The molten homogeneous mixture is then poured into convenient sized molds, allowed to cool, and thereby to solidify.

Liquid form preparations include solutions, suspensions, and emulsions, for example, water or water/propylene glycol solutions. For parenteral injection, liquid preparations can be formulated in solution in aqueous polyethylene glycol solution.

Aqueous solutions suitable for oral use can be prepared by dissolving the active component in water and adding suitable colorants, flavors, stabilizers, and thickening agents as desired. Aqueous suspensions suitable for oral use can be made by dispersing the finely divided active component in 50 water with viscous material, such as natural or synthetic gums, resins, methylcellulose, sodium carboxymethylcellulose, hydroxypropylmethylcellulose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia, and dispersing or wetting agents such as a naturally occurring 55 phosphatide (e.g., lecithin), a condensation product of an alkylene oxide with a fatty acid (e.g., polyoxyethylene stearate), a condensation product of ethylene oxide with a long chain aliphatic alcohol (e.g., heptadecaethylene oxycetanol), a condensation product of ethylene oxide with a partial ester 60 derived from a fatty acid and a hexitol (e.g., polyoxyethylene sorbitol mono-oleate), or a condensation product of ethylene oxide with a partial ester derived from fatty acid and a hexitol anhydride (e.g., polyoxyethylene sorbitan mono-oleate). The aqueous suspension can also contain one or more preservatives such as ethyl or n-propyl p-hydroxybenzoate, one or more coloring agents, one or more flavoring agents and one or

58
more sweetening agents, such as sucrose, aspartame or saccharin. Formulations can be adjusted for osmolarity.

Also included are solid form preparations, which are intended to be converted, shortly before use, to liquid form preparations for oral administration. Such liquid forms include solutions, suspensions, and emulsions. These preparations may contain, in addition to the active component, colorants, flavors, stabilizers, buffers, artificial and natural sweeteners, dispersants, thickeners, solubilizing agents, and the like.

Oil suspensions can be formulated by suspending a GR modulator in a vegetable oil, such as arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin; or a mixture of these. The oil suspensions can contain a thickening agent, such as beeswax, hard paraffin or cetyl alcohol. Sweetening agents can be added to provide a palatable oral preparation, such as glycerol, sorbitol or sucrose. These formulations can be preserved by the addition of an antioxidant such as ascorbic acid. As an example of an injectable oil vehicle, see Minto, J. Pharmacol. Exp. Ther. 281:93-102, 1997. The pharmaceutical formulations of the invention can also be in the form of oil-in-water emulsions. The oily phase can be a vegetable oil or a mineral oil, described above, or a mixture of these. Suitable emulsifying agents include naturally-occurring gums, such as gum acacia and gum tragacanth, naturally occurring phosphatides, such as soybean lecithin, esters or partial esters derived from fatty acids and hexitol anhydrides, such as sorbitan mono-oleate, and condensation products of these partial esters with ethylene oxide, such as polyoxyethylene sorbitan mono-oleate. The emulsion can also contain sweetening agents and flavoring agents, as in the formulation of syrups and elixirs. Such formulations can also contain a demulcent, a preservative, or a coloring agent.

VIII. Administration

The compositions of the present invention can be delivered by transdermally, by a topical route, formulated as applicator sticks, solutions, suspensions, emulsions, gels, creams, ointments, pastes, jellies, paints, powders, and aerosols.

The compositions of the present invention can also be delivered as microspheres for slow release in the body. For example, microspheres can be administered via intradermal injection of drug-containing microspheres, which slowly release subcutaneously (see Rao, *J. Biomater Sci. Polym. Ed.* 7:623-645, 1995; as biodegradable and injectable gel formulations (see, e.g., Gao *Pharm. Res.* 12:857-863, 1995); or, as microspheres for oral administration (see, e.g., Eyles, *J. Pharm. Pharmacol.* 49:669-674, 1997). Both transdermal and intradermal routes afford constant delivery for weeks or months.

The pharmaceutical compositions of the present invention can be provided as a salt and can be formed with many acids, including but not limited to hydrochloric, sulfuric, acetic, lactic, tartaric, malic, succinic, etc. Salts tend to be more soluble in aqueous or other protonic solvents that are the corresponding free base forms. In other cases, the preparation may be a lyophilized powder in 1 mM-50 mM histidine, 0.1%-2% sucrose, 2%-7% mannitol at a pH range of 4.5 to 5.5, that is combined with buffer prior to use.

In another embodiment, the compositions of the present invention are useful for parenteral administration, such as intravenous (IV) administration or administration into a body cavity or lumen of an organ. The formulations for administration will commonly comprise a solution of the compositions of the present invention dissolved in a pharmaceutically acceptable carrier. Among the acceptable vehicles and solvents that can be employed are water and Ringer's solution,

an isotonic sodium chloride. In addition, sterile fixed oils can conventionally be employed as a solvent or suspending medium. For this purpose any bland fixed oil can be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid can likewise be used in the preparation 5 of injectables. These solutions are sterile and generally free of undesirable matter. These formulations may be sterilized by conventional, well known sterilization techniques. The formulations may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, toxicity adjusting agents, e.g., sodium acetate, sodium chloride, potassium chloride, calcium chloride, sodium lactate and the like. The concentration of the compositions of the present invention in these formulations can vary widely, and will be 15 selected primarily based on fluid volumes, viscosities, body weight, and the like, in accordance with the particular mode of administration selected and the patient's needs. For IV administration, the formulation can be a sterile injectable preparation, such as a sterile injectable aqueous or oleaginous 20 suspension. This suspension can be formulated according to the known art using those suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation can also be a sterile injectable solution or suspension in a nontoxic parenterally-acceptable diluent or solvent, such as a 25 solution of 1,3-butanediol.

In another embodiment, the formulations of the compositions of the present invention can be delivered by the use of liposomes which fuse with the cellular membrane or are endocytosed, i.e., by employing ligands attached to the liposome, or attached directly to the oligonucleotide, that bind to surface membrane protein receptors of the cell resulting in endocytosis. By using liposomes, particularly where the liposome surface carries ligands specific for target cells, or are otherwise preferentially directed to a specific organ, one can 35 focus the delivery of the compositions of the present invention into the target cells in vivo. (See, e.g., Al-Muhammed, *J. Microencapsul.* 13:293-306, 1996; Chonn, *Curr. Opin. Biotechnol.* 6:698-708, 1995; Ostro, *Am. J. Hosp. Pharm.* 46:1576-1587, 1989).

The pharmaceutical preparation is preferably in unit dosage form. In such form the preparation is subdivided into unit doses containing appropriate quantities of the active component. The unit dosage form can be a packaged preparation, the package containing discrete quantities of preparation, such as packeted tablets, capsules, and powders in vials or ampoules. Also, the unit dosage form can be a capsule, tablet, cachet, or lozenge itself, or it can be the appropriate number of any of these in packaged form.

The quantity of active component in a unit dose preparation 50 may be varied or adjusted from 0.1 mg to 10000 mg, more typically 1.0 mg to 1000 mg, most typically 10 mg to 500 mg, according to the particular application and the potency of the active component. The composition can, if desired, also contain other compatible therapeutic agents.

The compounds described herein can be used in combination with one another, with other active agents known to be useful in modulating a protein kinase, or with adjunctive agents that may not be effective alone, but may contribute to the efficacy of the active agent.

In some embodiments, co-administration includes administering one active agent within 0.5, 1, 2, 4, 6, 8, 10, 12, 16, 20, or 24 hours of a second active agent. Co-administration includes administering two active agents simultaneously, approximately simultaneously (e.g., within about 1, 5, 10, 15, 65 20, or 30 minutes of each other), or sequentially in any order. In some embodiments, co-administration can be accom-

60

plished by co-formulation, i.e., preparing a single pharmaceutical composition including both active agents. In other embodiments, the active agents can be formulated separately. In another embodiment, the active and/or adjunctive agents may be linked or conjugated to one another.

IX. Nucleic Acids

In some embodiments, the present invention provides an isolated nucleic acid comprising a nucleic acid sequence encoding a recombinant kinase provided herein (i.e. a recombinant kinase comprising a cysteine substitution at a gate-keeper amino acid position). This is also referred to herein as a "nucleic acid of the present invention." Thus, provided herein are nucleic acids that encode the cysteine gatekeeper kinases described herein, e.g., recombinant kinases having a cysteine in the position corresponding to amino acid 338 of c-Src (SEQ ID NO:3).

In some embodiments, the nucleic acid sequence encodes a sequence or an enzymatically functional fragment thereof, set forth in SEQ ID NOs 2-77. The enzymatically functional fragment may be 50, 100, 150, or 200 bases in length. In some embodiments, the nucleic acid encodes a polypeptide having substantial identity to any one of SEQ ID NOs:2-77 wherein the polypeptide has a cysteine at the position corresponding to amino acid 338 of c-Src. One of skill will understand that a number of nucleic acid sequences will encode the some polypeptide, due to the degeneracy of the nucleic acid code. In some embodiments, the nucleic acid encodes a polypeptide encoding any one of SEQ ID NOs:2-77, wherein the polypeptide has a cysteine at the position corresponding to 338 of c-Src, or a sequence having at least 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% identity thereto. In some embodiments, the polypeptide is shorter than the full length of any one of SEQ ID NOs:2-77, but retains enzymatic (kinase) activity. In some embodiments, the polypeptide is at least 25, 30, 40, 50, 75, 80, 100, 120, 150, 200 or more amino acids in length, and has substantial identity over the corresponding length of the selected sequence (selected from the sequences consisting of SEQ ID NOs:2-77, having a C at the position corresponding to 338 of c-Src). For the non-identical amino 40 acids, one of skill will understand that conservative amino acid substitutions can be included.

In some embodiments, the nucleic acid encodes a polypeptide having substantial identity to any one of SEQ ID NOs:2-77 wherein the polypeptide has a cysteine at the position corresponding to amino acid 338 of c-Src, and an additional amino acid substitution at the position corresponding to amino acid 323 of c-Src and/or the position corresponding to amino acid 314 of c-Src. One of skill will understand that a number of nucleic acid sequences will encode the same polypeptide, due to the degeneracy of the nucleic acid code. In some embodiments, the nucleic acid encodes a polypeptide encoding any one of SEQ ID NOs:2-77, wherein the polypeptide has a cysteine at the position corresponding to 338 of c-Src, and optionally one or both of the substitutions at positions corresponding to amino acids 314 or 323 of c-Src, or a sequence having at least 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% identity thereto. In some embodiments, the polypeptide is shorter than the full length of any one of SEQ ID NOs:2-77, but retains enzymatic (kinase) activity. In some 60 embodiments, the polypeptide is at least 25, 30, 40, 50, 75, 80, 100, 120, 150, 200 or more amino acids in length, and has substantial identity over the corresponding length of the selected sequence (selected from the sequences consisting of SEQ ID NOs:2-77, having a C at the position corresponding to 338 of c-Src, and optionally one or both of the substitutions at positions corresponding to amino acids 314 or 323 of c-Src).

In some other embodiments, the present invention provides an expression cassette comprising a nucleic acid of the present invention. In yet other embodiments, the expression cassette is a recombinant viral vector. In some other embodiments, the expression cassette of is inside of a host cell. In 5 other embodiments, the expression cassette is selected from mammalian, non-mammalian, mouse, rat, or human. In some embodiments, the recombinant kinase is inside a cell. In some other embodiments, the cell is selected from mammalian, non-mammalian, mouse, rat, or human. Thus, in some 10 embodiments, a transgenic mouse or rat is provided, wherein

the transgenic mouse or rat expresses a recombinant kinase comprising a cysteine substitution at a gatekeeper amino acid position as described above. Methods of producing a transgenic mouse or rat that expresses recombinant proteins and enzymes are well-known in the art. A detailed description for such procedures may be found elsewhere, for example at U.S. Pat. No. 4,736,866, the contents of which are incorporated by reference in their entirety for all purposes.

62

A. Descriptions of SEQ ID NOs (1-51) Follows.

The following sets forth SEQ ID NOs:1-51 that are suitable for use with the compositions, methods, and kits herein:

```
SEQ ID NO: Description
             DNA construct for T338C c-src (251-533)
             Protein encoded by SEQ ID NO: 1
             Gallus gallus proto-oncogene (c = -Src)
            c-Src (251-533)
             c-Src (251-533) with GHM at N-terminal
             [T338X]c-Src (251-533)
             GHM-[T338X]c-Src (251-533) (GHM at N-terminal)
             [T338C]c-Src (251-533) (c-Src "ES1"
             GHM-[T338C]c-Src (251-533) (GHM at N-terminal) (c-Src "ES1")
     10
             [T338\bar{X}, V323X]c\text{-Src}\ (251\text{-}533)
             GHM-[T338X, V323X]c-Src (251-533) (GHM at N-terminal)
    11
    12
             [T338C, V323X]c-Src (251-533)
             GHM-[T338C, V323X]c-Src (251-533) (GHM at N-terminal)
    13
    14
             [T338C, V323A]c-Src (251-533) (c-Src "ES2"
             GHM-[T338C, V323A]c-Src (251-533) (GHM at N-terminal) (c-Src "ES2")
     15
     16
             [T338C, V323S]c-Src (251-533) (c-Src "ES3")
    17
             GHM-[T338C, V323S]c-Src (251-533) (GHM at N-terminal) (c-Src "ES3")
    18
             [T338C, V323D]c-Src (251-533) (c-Src "ES4"]
    19
             GHM-[T338C, V323D]c-Src (251-533) (GHM at N-terminal) (c-Src "ES4")
    20
             [T338C, V323E]c-Src (251-533) (c-Src "ES5"]
    21
             GHM-[T338C, V323E]c-Src (251-533) (GHM at N-terminal) (c-Src "ES5")
    22
             [T338C, V323H]c-Src (251-533) (c-Src "ES6")
    23
             GHM-[T338C, V323H]c-Src (251-533) (GHM at N-terminal) (c-Src "ES6")
    24
             Kinases with gatekeeper Cys (Arabidopsis thaliana) 4587987
    25
             Kinases with gatekeeper Cys (Arabidopsis thaliana) 19424095
    26
             Kinases with gatekeeper Cys (Arabidopsis thaliana) 1785621
    27
             Kinases with gatekeeper Cys (Arabidopsis thaliana) 4678270
    28
             Kinases with gatekeeper Cys (Arabidopsis thaliana) 4678272
    29
             Kinases with gatekeeper Cys (Arabidopsis thaliana) 4678273
    30
             Kinases with gatekeeper Cys (Arabidopsis thaliana) 4678277
    31
             Kinases with gatekeeper Cys (Arabidopsis thaliana) 4886274
    32
             Kinases with gatekeeper Cys (Arabidopsis thaliana) 3047095
             Kinases with gatekeeper Cys (Arabidopsis thaliana) 334188021/15238494
             Kinases with gatekeeper Cys (Arabidopsis thaliana) 9294588
    35
             Kinases with gatekeeper Cys (Arabidopsis thaliana) 11120792
    36
             Kinases with gatekeeper Cys (Arabidopsis thaliana) 11120796
    37
             Kinases with gatekeeper Cys (Arabidopsis thaliana) 8777331
    38
             Kinases with gatekeeper Cys (Mus musculus) 7106391
    39
             Kinases with gatekeeper Cys (Carassius auratus) 1705720
    40
             Kinases with gatekeeper Cys (Capsicum annuum) 6648996
    41
             Kinases with gatekeeper Cys (Leishmania major) 7630151
    42
             Kinases with gatekeeper Cys (Homo sapiens) 5139689
    43
             Kinases with gatekeeper Cys (Trichomonas vaginalis) 486948
    44
             Kinases with gatekeeper Cys (Plasmodium falciparum) 254688446/3845109
    45
             Kinases with gatekeeper Cys (Dictyostelium discoideum) 13509297
    46
             v-Src (Rous sarcoma virus)
    47
             [I338X]v-Src
    48
             [I338Clv-Src
    49
             II338T]v-Src
    50
             II338Glv-Src
             Artificial sequence (substrate for methods of testing)
```

An exemplary DNA construct useful for the methods described herein was synthesized (SEQ ID NO: 1). This construct encodes the expressed protein set forth in SEQ ID NO:2. The expressed protein includes a His₆ (SEQ ID NO:78) tag sequence at the N-terminal, useful for purification of recombinantly expressed protein as known in the art. The expressed protein further includes a spacer sequence (i.e., DYDIPTT, (SEQ ID NO:79), SEQ ID NO:2 residues 7-13) 65 and a tobacco etch viral (TEV) protease site (i.e., ENLYFQG, (SEQ ID NO: 80), SEQ ID NO:2, residues 14-20) as known in

the art. An additional spacer (e.g., SEQ ID NO:2, residues 21-22) may be present in expressed proteins, which spacers residues may occupy the N-terminal position(s) of the expressed protein after protease cleavage (e.g., TEV protease cleavage). Thus, it is understood that reference to "c-Src (251-533)" and variants thereof herein contemplates expressed proteins having one or more amino acids at the N-terminal which may result from the process of recombinant protein production. For example, after the action of the TEV protease on the protein of SEQ ID NO:2, the expressed c-Src

(251-533) protein may include the N-terminal tripeptide "GHM." It is understood that absent indication otherwise, the numbering of c-Src proteins and variants as discussed herein follows the numbering of the full c-Src protein (SEQ ID NO:3). For example, full length c-Src (SEQ ID NO:3) contains 533 residues. Accordingly, residues 23-305 of SEQ ID NO:2 correspond to residues 251-533 of SEQ ID NO:3. c-Src (251-533) is expressly set forth in SEQ ID NO:4. A recombinantly expressed and processed protein of c-Src (251-533), as described above, having the N-terminal tripeptide "GHM" 10 is set forth in SEQ ID NO:5.

In some embodiments, a c-Src variant is provided wherein the residue at the position equivalent to Thr³³⁸ of c-Src (SEQ ID NO:3) is substituted with another amino acid. In some embodiments, the substituted amino acid is a naturally occurring amino acid, as known in the art. Exemplary recombinantly expressed proteins having this substitution are set forth in SEQ ID NO:6 and SEQ ID NO:7, wherein SEQ ID NO:7 further includes the N-terminal tripeptide "GHM" as described above. Similarly, in some embodiments, a v-Src 20 variant is provided wherein the residue at the position equivalent to Thr³³⁸ of v-Src (SEQ ID NO:46) is substituted with another amino acid. An exemplary recombinantly expressed protein having this substitution is set forth in SEQ ID NO:47. Specific exemplary recombinantly expressed proteins having 25 a C, T or G substitution at position 338 of v-Src (i.e., [I338C] v-Src, [I338T]v-Src, [I338G]v-Src), are set forth in SEQ ID NO: 48, SEQ ID NO:49 and SEQ ID NO:50, respectively.

In some embodiments, a protein kinase is provided having a Thr to Cys substitution at the position corresponding to 30 residue 338 of c-Src (i.e., T338C substitution). The protein may be a fragment of full length c-Src. Recombinantly expressed protein variants of c-Src (251-533) having a T338C substitution (i.e., [T338C]c-Src(251-533)) are set forth in SEQ ID NO:8 and SEQ ID NO:9. It is understood that within 35 the context of protein descriptive names, bracketed (i.e., "[]") entries denote substitution(s), and that parenthetic entries after the protein name denote the corresponding residues of the fragment. For example, "[T338C]c-Src(251-533)" refers to the fragment of c-Src from residue 251 to residue 533, 40 additionally having a Thr to Cys substitution at position 338 (c-Src numbering). These proteins are also known as "c-Src ES1" proteins. It is further understood that, as customary in the art, the term "XNNNY" refers to substitution of residue "X" at position "NNN" with residue "Y."

In some embodiments, a plurality of substitutions of c-Src, or fragment thereof, are provided. For example, in some embodiments, a protein having double substitutions at residues T³³⁸ and V³²³ of c-Src is provided. In some embodiments, a protein having double substitutions at residues T³³⁸ ond V³²³ of a fragment of c-Src (e.g., c-Src(251-533)) is provided. See SEQ ID NO:10. In some embodiments, the fragment of c-Src includes an N-terminal oligopeptide sequence resulting from processing of the recombinant protein as described above. See SEQ ID NO:11.

In some embodiments, there is provided a T338C substitution of c-Src, or fragment thereof (e.g., c-Src(251-533), in combination with a substitution at position 323. See SEQ ID NO:12. In some embodiments, such doubly substituted fragment of c-Src includes an N-terminal oligopeptide sequence from processing of the recombinant protein as described above. See SEQ ID NO:13.

In some embodiments, a T338C substitution of c-Src, or fragment thereof (e.g., c-Src(251-533), in combination with a specific substitution at position 323 is provided. For example, 65 [T³³⁸C, V³²³A]c-Src(251-533) is set forth in SEQ ID NO:14, and the corresponding protein having an N-terminal oli-

64

gopeptide sequence resulting from processing of the recombinant protein is set forth in SEQ ID NO:15. These doubly substituted proteins are also known as the so-called c-Src "ES2" variant.

Further exemplary of this embodiment, there is provided $[T^{338}C, V^{323}S]c$ -Src(251-533) (SEQ ID NO:16), and the corresponding protein having an N-terminal oligopeptide sequence resulting from processing of the recombinant protein (SEQ ID NO:17). These doubly substituted proteins are also known as the so-called c-Src "ES3" variant.

Further exemplary of this embodiment, there is provided $[T^{338}C, V^{323}D]c\text{-Src}(251\text{-}533)$ (SEQ ID NO:18), and the corresponding protein having an N-terminal oligopeptide sequence resulting from processing of the recombinant protein (SEQ ID NO:19). These doubly substituted proteins are also known as the so-called c-Src "E54" variant.

Further exemplary of this embodiment, there is provided [T³³⁸C, V³²³E]c-Src(251-533) (SEQ ID NO:20), and the corresponding protein having an N-terminal oligopeptide sequence resulting from processing of the recombinant protein (SEQ ID NO:21). These doubly substituted proteins are also known as the so-called c-Src "ES5" variant.

Further exemplary of this embodiment, there is provided $[T^{338}C, V^{323}H]c$ -Src(251-533) (SEQ ID NO:22), and the corresponding protein having an N-terminal oligopeptide sequence resulting from processing of the recombinant protein (SEQ ID NO:23). These doubly substituted proteins are also known as the so-called c-Src "ES6" variant.

X. Methods

A. General

In some embodiments, the present invention provides methods of determining the role of a kinase in a cell. In certain embodiments, the methods include determining the dependence of transformed cells on aberrant oncogenic signaling by the EGFR kinase. In other embodiments, the determining includes assaying inhibitor-induced conformational changes of kinases. In other embodiments, the methods include elucidating the mechanisms of inhibitor-induced Akt hyperphosphorylation. In some embodiments, the methods include transactivation of RAF dimmers.

In some other embodiments, the present invention provides
45 a chemical genetic approach based on engineered shape
complementarity between the kinase active site and a small
molecule inhibitor, which allows systematic discovery of an
inhibitor for a particular kinase. In some embodiments, a
50 conserved hydrophobic residue in the kinase active site
known as the "gatekeeper" is mutated to a small residue such
as glycine or alanine to generate a uniquely targetable mutant
kinase termed an analog-sensitive (AS) allele.

In certain other embodiments, the present invention provides methods of making engineered kinase which can be targeted with sterically bulky analogs of natural kinase inhibitors, which are capable of occupying the enlarged engineered kinase pocket (FIG. 1). In some embodiments, the methods include wild type kinases which may be resistant to inhibition by the bulky analog as the result of a steric clash with naturally occurring gatekeeper residues (e.g. Met, Leu, Phe, Thr, Gln and others). In yet other instances, the wild type kinases may not be resistant to inhibition by the bulky analog as the result of a steric clash with naturally occurring gatekeeper residues (e.g. Met, Leu, Phe, Thr, Gln and others).

B. Structure Activity Relationship (SAR) Analysis

In order to determine the effects of modifying the group at this position, a structure activity relationship (SAR) analysis was performed on the pyrazolopyrimidine scaffold with a benzyl-linked m-vinylsulfonamide (compounds 9, 15-17; Table 2). This analysis revealed that secondary alkyl groups such as isopropyl (9) and cyclopentyl (17) moieties elicited optimal activity against T338C c-Src. Relative to isopropyl substitution, tert-butyl (16) and methyl (15) derivatization 10 resulted in 4- and 21-fold drops in potency, respectively.

Collectively, these results indicate that substitution at N1 can be used to modulate potency against T338C c-Src. IN some instances, Michael acceptor-derivatized 4-anilino-quinazolines were synthesized and evaluated as inhibitors (compounds 18-20; Table 2).

In some embodiments, the ES kinase alleles should be useful for a host of other applications. For example, fluorescently labeled versions of the inhibitors could be used to quantitatively probe the occupancy of kinase active sites to determine the percent activity required for signaling events. In some other embodiments, the present invention provides a method for determining the properties of pseudokinases, for which there is no good readout of active site occupancy. In certain embodiments, the present invention sets forth the use of irreversible inhibitors and allows for the validation of target specificity.

In some embodiments, the present invention provides methods of evaluating the reversibility of inhibition of a kinase as set forth herein. In some embodiments, an electrophilic inhibitors covalently interact with the cysteine gate-keeper. In one instance, two compounds, 9 and 13, were assayed accordingly. Both compounds inhibited T338C c-Src in a time-dependent manner (Table 3).

In addition, when T338C c-Src was treated with either inhibitor and purified by gel filtration and the inhibitory activity against the kinase was retained. See FIG. **5**. In contrast, in the case of WT c-Src, inhibitory activity was lost after gel filtration. Importantly, inhibition by PP1, a reversible Src inhibitor, was abrogated in the cases of both WT and T338C c-Src following gel filtration (FIG. **5**). Full protein mass spectrometry suggested specific labeling of T338C relative to WT c-Src for 9 (FIG. **2**). However, under similar conditions, an adduct formation with 13 was not observed, possibly due to a reversible covalent interaction. The results suggest that covalent binding of the electrophilic inhibitors depend on the presence of a cysteine gatekeeper, i.e. T338C c-Src as electrophile-sensitive c-Src1 (c-Src-ES1).

TABLE 3

Compounds 9 and 13 exhibit time-dependent inhibition against T338C c-Src. Compounds were preincubated with the enzyme prior to initializing the reaction with ATP.

	Prein	nin)	
Compound	2	20	40
	T338	BC c-Src IC ₅₀ (nl	M)
9	981	309	138
13	1281	318	136

66

Table 3 shows compounds 9 and 13 exhibit time-dependent inhibition against T338C c-Src. Compounds were preincubated with the enzyme prior to initializing the reaction with ATP.

XI. Methods of Inhibiting a Kinase

In some other embodiments, the present invention provides a method of imparting to a kinase the capability of being inhibited by a heterocyclic compound, comprising replacing a gatekeeper amino acid residue within an ATP binding site of a kinase with a cysteine residue thereby forming a cysteine substituted kinase.

In some embodiments, the present invention provides a method of inhibiting a recombinant kinase as set forth herein, comprising contacting the recombinant kinase with an effective amount of an inhibitor, thereby inhibiting the recombinant kinase. In some embodiments, the inhibitor is capable of forming a covalent bond to the cysteine at the gatekeeper amino acid position of the recombinant kinase. In some embodiments, the inhibitor is a compound as set forth herein, e.g. a compound of formulas I-XXIX. In some other embodiments, the method further comprises determining a level of inhibition for the recombinant kinase. In some embodiments, the determining of said level of inhibition for the recombinant kinase comprises: determining an amount of enzymatic activity of the recombinant kinase in the presence of the inhibitor; determining an amount of enzymatic activity of the recombinant kinase in the absence of the inhibitor; and comparing the amount of enzymatic activity of the recombinant kinase in the presence of the inhibitor with the amount of enzymatic activity of the recombinant kinase in the absence of the inhibitor. thereby determining a level of inhibition for the recombinant kinase. In some embodiments, the enzymatic activity is selected from phosphorylation of a non-specific protein target, phosphorylation of a specific protein target, consumption of ATP, or cell growth.

In other embodiments, the present invention provides a method as set forth herein wherein the recombinant kinase is in a cell. In some embodiments, the methods set forth herein further comprise determining a function of the recombinant kinase in the cell, by: determining an amount of enzymatic activity of the recombinant kinase in the presence of the inhibitor in the cell; determining an amount of enzymatic activity of the recombinant kinase in the absence of the inhibitor in the cell; and comparing the amount of enzymatic activity of the recombinant kinase in the presence of the inhibitor with the amount of enzymatic activity of the recombinant kinase in the absence of the inhibitor, thereby determining a function of the recombinant kinase in the cell. In some embodiments, the enzymatic activity is selected from phosphorylation of a specific protein target.

In other embodiments, the methods as set forth herein include a recombinant kinase is selected from Src; MOK; Sgk494; Lrrk-2; Yak/Yrk; SRPK1; CDK; DICTY-I; PAK/STE20; or Ctrl/DPYK1. In some embodiments, the recombinant kinase is Src.

In some embodiments, the present invention provides a method of inhibiting a Lrrk-2 kinase, comprising contacting the Lrrk-2 kinase with an effective amount of a Lrrk-2 inhibitor, thereby inhibiting the recombinant Lrrk-2 kinase. A Lrrk-2 inhibitor is compound of Formula (XV) to (XXIX) including embodiments thereof.

XII. Methods of Treating

In some embodiments, the present invention provides a method of treating a kinase-associated disease or condition, in a patient in need thereof. The method includes administering to the patient a therapeutically effective amount of a compound provided herein, thereby treating a kinase-associated disease or condition. In some embodiments, the compound is a kinase inhibitor capable of forming a covalent bond to the cysteine at the gatekeeper amino acid position of the recombinant kinase. In some embodiments, the compound is a compound as set forth herein, e.g. a compound of formulas (I)-(XXIX) including embodiments thereof. In certain embodiments, the kinase-associated disease or condition is selective from cancer, immunological disorders, neurological disorders, neurodegenerative disorders, infections, metabolic diseases, Leishmania major, zoonotic cutaneous leishmaniasis, Plasmodium falciparum, malaria, Trichomonas vaginalis, and trichomiasis. In certain other embodiments, the cancer is selected from neoplasm or malignant tumors found in mammals; leukemia; carcinomas and sarcomas; cancer of the brain, breast, cervix, colon, head and neck, liver, kidney, lung, non-small cell lung, ovary, testicle, stomach, uterus; melanoma; mesothelioma; Medulloblastoma; Hodgkin's 25 Disease, Non-Hodgkin's Lymphoma; multiple myeloma; neuroblastoma; rhabdomyosarcoma; primary thrombocytosis; primary macroglobulinemia; primary brain tumors; malignant pancreatic insulanoma; malignant carcinoid; urinary bladder cancer; premalignant skin lesions; lymphomas; thyroid cancer; neuroblastoma; esophageal cancer; genitourinary tract cancer; malignant hypercalcemia; endometrial cancer; adrenal cortical cancer; neoplasms of the endocrine and exocrine pancreas; or prostate cancer. In yet other embodi- 35 ments, the disease or condition is a neurodegenerative disease selective from Parkinson's disease.

In some other embodiments, the present invention also provides a method of treating a Lrrk-2-associated disease or condition, in a patient in need thereof, said method compris68

ing administering to said patient a therapeutically effective amount of a Lrrk-2 inhibitor, thereby treating a Lrrk-2-associated disease or condition. In some embodiments, the disease or condition is a neurodegenerative disease selected from Parkinson's Disease.

In some embodiments, the methods further include the step of allowing the cell to express the recombinant kinase.

XIII. Tables Relevant to the Methods and Assays Herein

TABLE 4

Relative k _{oar} /K _m for a	series of c-Src variants	
c-Src Variant	rel. $\mathbf{k}_{cat}/\mathbf{K}_{m}$	
ES1	1.00 ± 0.09	
ES2	0.39 ± 0.03	
ES3	0.21 ± 0.04	
ES4	N.D.	
ES5	N.D.	
ES6	N.D.	
	c-Src Variant ES1 ES2 ES3 ES4 ES5	ES1 1.00 ± 0.09 ES2 0.39 ± 0.03 ES3 0.21 ± 0.04 ES4 N.D. ES5 N.D.

Table 5a-5c show relative catalytic efficiency for T338C c-Src with second-site mutations (ES1=T338C; ES2=T338C/V323A; ES3=T338C/V323S, ES4=T338C/V323D; ES5=T338C/V323E; ES6=T338C/V323H). Data were fitted to the Michaelis-Menten equation and standard errors of the fits are reported. Data are unitless.

Table 5 shows kinome-wide screening of a panel of inhibitors. Compounds were screened using the SelectScreenTM platform developed by Life Technologies. Z'lyte (a, measures kinase activity), Adapta (b, measures kinase activity) and Lantha assays (c, measures ATP binding) were performed. Inhibition data are represented in a heat map format.

Table 6 shows comparison of selectivity of 13, 1NA-PP1 and 1NM-PP1. All kinases for which >40% inhibition was observed in a kinome wide Z'lyte screen (Life Technologies) are shown. Legend for Tables 5-6: <40% inhibition (gray); 40%-80% inhibition (white); ≥80% inhibition (diagonal stripes).

TABLE 5a

	1.	ADLE 3a					
Conc Compound			1000 nM 3	1000 nM 4	1000 nM 9	1000 nM 13	1000 nM 20
ABL1	Activity	Km app	7	5	4	2	1
ABL1 E255K	Activity	Km app	14	8	5	3	*
ABL1 G250E	Activity	Km app	3	1	-0	-3	1
ABL1 T315I	Activity	Km app	-1	1	4	-2	4
ABL1 Y253F	Activity	Km app	17	16	12	10	12
ABL2 (Arg)	Activity	Km app	17	15	11	5	- 8
ACVR1B (ALK4)	Activity	Km app	13	8	•	2	
ADRBK1 (GRK2)	Activity	Km app	23	22	21	18	13
ADRBK2 (GRK3)	Activity	Km app	- 0	- 0	1	-1	- 0
AKT1 (PKB alpha)	Activity	Km app	-4	-1	- ()	-0	-4
AKT2 (PKB beta)	Activity	Km app	5	3	4	5	3
AKT3 (PKB gamma)	Activity	Km app	-1	2	3	5	1
ALK	Activity	Km app	5	7	2	-0	1
AMPK A1/B1/G1	Activity	Km app	14	20	29	28	14
AMPK A2/B1/G1	Activity	Km app	12	14	20	19	7
AURKA (Aurora A)	Activity	Km app	7	4	9	3	12

69

TABLE 5a-continued

AURKB (Aurora B)	Activity	Km app	9	9	9	- 5	27
AURKC (Aurora C)	Activity	Km app	- 8	8	7	6	25
AXL	Activity	Km app	9	6	1	1	9
BLK	Activity	Km app	48	34	20	10	42
BMX	Activity	Km app	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		68	9	26
BRAF	Activity	100	38	8	7	4	6
BRAF V599E	Activity	100		13	17	21	9
BRSK1 (SAD 1)	Activity	Km app	11	14	13	9	17
BTK	Activity	Km app	44	36	42	1	17
CAMK1D (CaMKI delta)	Activity	Km app	21	22	18	20	16
CAMK2A (CaMKII alpha)	Activity	Km app	-2	1	2	- 5	1
CAMK2B (CaMKII beta)	Activity	Km app	6	6	11	1	8
CAMK2D (CaMKII delta)	Activity	Km app	16	15	8	10	8
CAMK4 (CaMKIV)	Activity	Km app	9	8	10	11	7
CDC42 BPA (MRCKA)	Activity	Km app	12	16	22	24	20
CDC42 BPB (MRCKB)	Activity	Km app	1	ΨĮ	-3	-7	-1
CDK1/cyclin B	Activity	Km app	10	2	7	4	1
CDK2/cyclin A	Activity	Km app	9	5	16	11	0
CDK5/p25	Activity	Km app	13	9	21	12	9

CDK5/p35	Activity	Km app	18	8	24	7	- 5
CHEK1 (CHK1)	Activity	Km app	- 11	-3	√5	-7	-11
CHEK2 (CHK2)	Activity	Km app	0	.3	2	2	17
CLK1	Activity	Km app	- 8	7	12	7	7
CLK2	Activity	Km app	- 0	-1	0	-1	-3
CLK3	Activity	Km app	- 6	8	7	- 6	7
CSF1R (FMS)	Activity	Km app	7	10	7	4	- 5
CSK	Activity	Km app	22	9	9	- 8	12
CSNK1A1 (CK1 alpha 1)	Activity	Km app	20	12	6	14	0
CSNK1D(CK1 delta)	Activity	Km app	9	- 5	- 8	15	- 4
CSNK1E(CK1 epsilon)	Activity	Km app	18	- 6	10	40	7
CSNK1G1 (CK1 gamma 1)	Activity	Km app	3	- 4	4	1	15
CSNK1G2 (CK1 gamma 2)	Activity	Km app	7	7	8	3	36
CSNK1G3 (CK1 gamma 3)	Activity	Km app	6	11	10	9	31
CSNK2A1 (CK2 alpha 1)	Activity	Km app	17	18	5	14	12
CSNK2A2 (CK2 alpha 2)	Activity	Km app	- 6	-2	-1	1	-5
DAPK3 (ZIPK)	Activity	Km app	1	2	3	0	3
DCAMKL2 (DCK2)	Activity	Km app	7	S	6	2	8
DNA-PK	Activity	Km app	68	27	15	12	12

TABLE 5a-continued

DYRK1A	Activity	Km app	-1	-1	1	-5	-3
DYRK1B	Activity	Km app	-1	2	2	-1	2
DYRK3	Activity	Km app	3	2	23	- 0	4
DYRK4	Activity	Km app	1	3	3	3	2
EEF2K	Activity	Km app	5	7	8	7	•
EGFR (ErbB1)	Activity	Km app	50	26	- 8	-5	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>
EGFR (ErbB1) L858R	Activity	Km app	61	36	23	1	71
EGFR (ErbB1) L861Q	Activity	Km app		46	18	1	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>
EGFR (ErbB1) T790M	Activity	Km app	36	27	12	4	12
EGFR (ErbB1) T790M L858R	Activity	Km app	64	39	19	10	23
EPHA1	Activity	Km app	33	14	14	-15	11
EPHA2	Activity	Km app	7	- 5	6	4	- 5
EPHA4	Activity	Km app	19	8	8	7	9
EPHA5	Activity	Km app	22	11	11	5	7
EPHA8	Activity	Km app	23	7	9	9	- 6
EPHB1	Activity	Km app	12	6	6	- 5	7
EPHB2	Activity	Km app	21	12	15	14	12
EPHB3	Activity	Km app	40	10	18	6	8
EPHB4	Activity	Km app	14	11	11	- 6	9

ERBB2 (HER2)	Activity	Km app	40	23	19	16	55
ERBB4 (HER4)	Activity	Km app	70		15	•	
FER	Activity	Km app	13	9	7	7	10
FES (FPS)	Activity	Km app	8	10	2	12	11
FGFR1	Activity	Km app	24	53	22	15	1
FGFR2	Activity	Km app	18	3	4	3	8
FGFR3	Activity	Km app	20	10	4	- 6	9
FGFR3 K650E	Activity	Km app	28	2	6	-2	9
FGFR4	Activity	Km app	17	- 8	- 5	-6	-1
FGR	Activity	Km app	79	16	20	-6	30
FLT1 (VEGFR1)	Activity	Km app	3	1	2	-2	2
FLT3	Activity	Km app	29	0	- 6	-7	31
FLT3 D835Y	Activity	Km app	34	16	42	- 8	15
FLT4 (VEGFR3)	Activity	Km app	28	33	13	g	41
FRAP1 (mTOR)	Activity	Km app	24	-2	-8	-8	-10
FRK (PTK5)	Activity	Km app	25	g	8	- 5	- 9
FYN	Activity	Km app	17	ij	10	-6	-3
GRK4	Activity	Km app	10	10	5	2	- 0
GRK5	Activity	Km app	1	-3	-3	-3	2
GRK6	Activity	Km app	15	16	10	7	5

73TABLE 5a-continued

							p
GRK7	Activity	Km app	-1	- 0	-1	-3	- 0
GSK3A (GSK3 alpha)	Activity	Km app	3	5	5	-3	-3
GSK3B (GSK3 beta)	Activity	Km app	3	- 0	3	-5	-3
HCK	Activity	Km app	17	4	- 6	5	11
HIPK1 (Myak)	Activity	Km app	8	- 5	4	4	4
HIPK2	Activity	Km app	11	6	4	4	4
HIPK3 (YAK1)	Activity	Km app	- 5	- 6	- 4	3	- 5
HIPK4	Activity	Km app	6	6	9	4	7
IGF1R	Activity	Km app	5	4	0	-7	2
IKBKB (IKK beta)	Activity	Km app	16	17	18	16	12
IKBKE (IKK epsilon)	Activity	Km app	16	20	15	14	10
INSR	Activity	Km app	-2	2	3	2	- 6
INSRR (IRR)	Activity	Km app	9	10	9	9	11
IRAK4	Activity	Km app	4	1	2	-6	-2
ITK	Activity	Km app	3	-6	-4	-4	-7
JAK1	Activity	Km app	4	8	14	16	11

JAK2	Activity	Km app	7	5	5	4	2
JAK2 JH1 JH2	Activity	Km app	1		-6	-4	÷]
JAK2 JH1 JH2 V617F	Activity	Km app	2		-3	-4	2
JAK3	Activity	Km app	23	72	14	10	12
KDR (VEGFR2)	Activity	Km app	- 6	-14	-17	-18	16
KIT	Activity	Km app	17	19	12	7	6
KIT T670I	Activity	Km app	10	7	8	7	3
LCK	Activity	Km app	48	-1	-13	-18	11
LTK (TYK1)	Activity	Km app	1	0	-4	-5	1
LYN A	Activity	Km app	34	9	12	8	28
LYN B	Activity	Km app	39	16	15	14	30
MAP2K1 (MEK1)	Activity	100	31	7	3	. 5	1)
MAP2K2 (MEK2)	Activity	100	49	12	11	10	7
MAP2K6 (MKK6)	Activity	100	•	8	11	13	16
MAP3K8 (COT)	Activity	100	33	2	0	0	0
MAP3K9 (MLK1)	Activity	Km app	*	3	4	ı	21
MAP4K2 (GCK)	Activity	Km app	-16	2	7	11	4
MAP4K4 (HGK)	Activity	Km app	15	14	16	18	21
MAP4K5 (KHS1)	Activity	Km app	22	17	48	20	36

75TABLE 5a-continued

	T	T	100000000000000000000000000000000000000	100000000000000000000000000000000000000	10000000000	100000000000	10000000000
MAPK1 (ERK2)	Activity	Km app	3	6	3	2	2
MAPK10 (JNK3)	Activity	100	- 6	13	2	7	10
MAPK11 (p38 beta)	Activity	Km app	9	11	9	10	9
MAPK12 (p38 gamma)	Activity	Km app	9	13	10	9	14
MAPK13 (p38 delta)	Activity	Km app	2	6	6	8	-6
MAPK14 (p38 alpha)	Activity	100	21	20	22	24	22
MAPK14 (p38 alpha) Direct	Activity	Km app	1	4	9	12	10
MAPK3 (ERK1)	Activity	Km app	15	31	13	10	14
MAPK8 (JNK1)	Activity	100	17	21	24	21	19
MAPK9 (JNK2)	Activity	100	- 5	7	- 8	- 8	7
MAPKAPK2	Activity	Km app	1	2	4	- 6	- 5
MAPKAPK3	Activity	Km app	- 5	-6	- 5	3	- 5
MAPKAPK5 (PRAK)	Activity	Km app	-4	-1	4	7	7
MARK1 (MARK)	Activity	Km app	-1	0	2	2	-4
MARK2	Activity	Km app	1	2	4	- 5	1
MARK3	Activity	Km app	- 6	- 8	6	2	- 5
MARK4	Activity	Km app	2	4	3		-1
MATK (HYL)	Activity	Km app	3	- 5	6	- 5	4
MELK	Activity	Km app	16	28	29	15	32

MERTK (cMER)	Activity	Km app	9 4 8 17 48
MET (cMet)	Activity	Km app	-4 27 10 8 0
MET M1250T	Activity	Km app	7 7 4 2 6

MINK1	Activity	Km app	31	17	23	19	22
MKNK1 (MNK1)	Activity	Km app	5	0	-4	-5	16
MST1R (RON)	Activity	Km app	13	-11	9	- 5	9
MST4	Activity	Km app	8	13	21	7	30
MUSK	Activity	Km app	15	12	11	18	1
MYLK2 (skMLCK)	Activity	Km app	2	2	5	- 0	2
NEK1	Activity	Km app	14	-5	7	4	10
NEK2	Activity	Km app	-1	-4	-10	0	-8
NEK4	Activity	Km app	- 8	10	17	19	15
NEK6	Activity	Km app	4	- 5	10	12	4
NEK7	Activity	Km app	7	8	- 8	8	6
NEK9	Activity	Km app	15	12	13	12	12
NTRK1 (TRKA)	Activity	Km app	37	-23	21	17	48
NTRK2 (TRKB)	Activity	Km app	16	4	23	12	-j
NTRK3 (TRKC)	Activity	Km app	16	-5	18	-6	-8
PAK1	Activity	Km app	12	12	10	13	16

77TABLE 5a-continued

PAK2 (PAK65)	Activity	Km app	18	12	12	13	10
PAK3	Activity	Km app	4	3	- 6	- 6	2
PAK4	Activity	Km app	-5	-8	-7	-6	-5
PAK6	Activity	Km app	7	10	10	- 8	- 5
PAK7 (KIAA1264)	Activity	Km app	9	13	13	- 0	11
PASK	Activity	Km app	11	9	- 8	7	7
PDGFRA (PDGFR alpha)	Activity	Km app	13	6	5	4	16
PDGFRA D842V	Activity	Km app	- 5	3	0	3	9
PDGFRA T674I	Activity	Km app	11	11	-2	4	11
PDGFRA V561D	Activity	Km app	19	12	- 5	1	27
PDGFRB (PDGFR beta)	Activity	Km app	16	10	5	- 5	11
PDK1	Activity	100	- 5	11	11	11	11
PDK1 Direct	Activity	Km app	1	-1	- 3	- 0	-5
PHKG1	Activity	Km app	- 8	8	- 8	10	5
PHKG2	Activity	Km app	1	6	4	-1	7

PIM1	Activity	Km app	16	12	11	12	10
PIM2	Activity	Km app	- 3		2	-1	-3
PKN1 (PRK1)	Activity	Km app	15	17	18	12	9
PLK1	Activity	Km app	-7	-3	-6	-1	4
PLK2	Activity	Km app	13	8	7		7
PLK3	Activity	Km app	2	-4	0	-2	3
PRKACA (PKA)	Activity	Km app	-1	Ű.	-1	-4	-2
PRKCA (PKC alpha)	Activity	Km app	- 8	15	19	17	18
PRKCB1 (PKC beta I)	Activity	Km app	-1	11	10	- 8	5
PRKCB2 (PKC beta II)	Activity	Km app	9	13	7	4	4
PRKCD (PKC delta)	Activity	Km app	14	18	20	16	17
PRKCE (PKC epsilon)	Activity	Km app	12	16	21	19	10
PRKCG (PKC gamma)	Activity	Km app	18	13	22	19	14
PRKCH (PKC eta)	Activity	Km app	28	6	25	24	10
PRKCI (PKC iota)	Activity	Km app	10	13	13	13	10
PRKCN (PKD3)	Activity	Km app	- 8	7	12	16	11
PRKCQ (PKC theta)	Activity	Km app	- 0	11	13	13	12
PRKCZ (PKC zeta)	Activity	Km app	- 0	5	- 5	- 8	7
PRKD1 (PKC mu)	Activity	Km app	*	10	17	18	10

PRKD2 (PKD2)	Activity	Km app	11	11	12	19	16
PRKG1	Activity		1			-1	
PRKG2 (PKG2)	Activity	Km app	- 0	0	-1	0	- ()
PRKX	Activity	Km app	- 3	- 5	3	1	5
PTK2 (FAK)	Activity	Km app	7			7	6
PTK2B (FAK2)	Activity	Km app	- 5		2	1	1
PTK6 (Brk)	Activity	Km app	68	3	30	27	74

79TABLE 5a-continued

RAF1 (cRAF) Y340D Y341D	Activity	100	39	7	7	7	18
RET	Activity	Km app	41	11	12	8	40
RET V804L	Activity	Km app	4	3	- 6	2	13
RET Y791F	Activity	Km app	44	9	10	8	41
ROCK1	Activity	Km app	2	- 0	- 0	-3	-1
ROCK2	Activity	Km app	18	21	19	14	24
ROS1	Activity	Km app	7	23	5	2	- 5
RPS6KA1 (RSK1)	Activity	Km app	1	1	1	-2	- 5
RPS6KA2 (RSK3)	Activity	Km app	2	- 8	- 3	0	12
RPS6KA3 (RSK2)	Activity	Km app	4	4	4	4	4
RPS6KA4 (MSK2)	Activity	Km app	11	7	8	- 6	6
RPS6KA5 (MSK1)	Activity	Km app	7	8	6	3	7
RPS6KA6 (RSK4)	Activity	Km app	24	21	19	5	53
RPS6KB1 (p70S6K)	Activity	Km app	- 8	8	14	13	10
SGK (SGK1)	Activity	Km app	10	4	6	-1	2
SGK2	Activity	Km app	9	10	7	- 5	11
SGKL (SGK3)	Activity	Km app	\$	- 5	5	3	- 6
SNF1LK2	Activity	Km app	3	5	2		3
SRC	Activity	Km app	40	3	1	-6	20

SRC N1	Activity	Km app	53	8	13	4	19
SRMS (Srm)	Activity	Km app	<i>\\\\\\\</i>	19	11	10	13
SRPK1	Activity	Km app	2	3	4	4	2
SRPK2	Activity	Km app	13	13	11	12	9
STK22B (TSSK2)	Activity	Km app	8	3	0	- 0	6
STK22D (TSSK1)	Activity	Km app	3	6	10	12	11
STK23 (MSSK1)	Activity	Km app	7	7	9	6	8
STK24 (MST3)	Activity	Km app	13	13	9	10	13
STK25 (YSK1)	Activity	Km app	10	8	10	0	g
STK3 (MST2)	Activity	Km app	-7	-9	-8	-9	-13
STK4 (MST1)	Activity	Km app	12	5	3	2	3
SYK	Activity	Km app	-7	-6	-6	-8	-2
TAOK2 (TAO1)	Activity	Km app	6	4	-6	2	2
TBK1	Activity	Km app	- 5	-2	0	-11	-5
TEK (Tie2)	Activity	Km app	-3	-9	-8	-7	-10
TXK	Activity	Km app	80	66	<i>\\\\\\\</i>	7	62
TYK2	Activity	Km app	-2	-2	-2	-5	-5
TYRO3 (RSE)	Activity	Km app	20	13	10	- 8	14
YES1	Activity	Km app	64	15	17	8	43
ZAP70	Activity	Km app	12	13	10	11	10

TABLE 5b

Conc Compound			1000 nM 3	1000 nM 4	1000 nM 9	1000 nM 13	1000 nM 20
CAMK1 (CaMK1)	Activity	100	- 6	11	4	8	-20
CDK7/cyclin H/MNAT1	Activity	Km app	-7	-1	20	-10	10
CDK9/cyclin T1	Activity	Km app	23	14	-2	9	13
CHUK (IKK alpha)	Activity	Km app	1	- 5	12	-6	2
DAPK1	Activity	Km app	-1	5	9	5	- 5
GSG2 (Haspin)	Activity	Km app	21	6	13	12	9
IRAK1	Activity	Km app	0	8	15	-14	13
LRRK2	Activity	Km app	7	7	0	-2	21

LRRK2 G2019S	Activity	Km app	-4	-13	-17	-7	-5
NUAK1 (ARK5)	Activity	Km app	9	15	22	14	12
PI4KA (PI4K alpha)	Activity	10	-12	-6	0	2	9
PI4KB (PI4K beta)	Activity	Km app	37	13	29	13	9
PIK3C2A (PI3K-C2 alpha)	Activity	Km app	-3	9	3	-4	8
PIK3C2B (PI3K-C2 beta)	Activity	100	26	2	3	-1	13
PIK3C3 (hVPS34)	Activity	Km app	-6	•	-1	-5	- 0
PIK3CA/PIK3R1 (p110	Activity	Km app	51	×1	7	2	9
alpha/p85 alpha)							
PIK3CD/PIK3R1 (p110	Activity	Km app	66	7	18	-1	4
delta/p85 alpha)							
PIK3CG (p110 gamma)	Activity	Km app	48	11	-3	-2	5
SPHK1	Activity	Km app	-16	2	3	8	7
SPHK2	Activity	100	9	-4	.7	÷14	4

TABLE 5c

Conc Compound		1000 nM 3	1000 nM 4	1000 n M 9	1000 nM 13	1000 nM 20
ACVR1 (ALK2)	Binding		10	12	3	4
ACVR2B	Binding	20	19	4	8	-11
BMPR1A (ALK3)	Binding	37	- 5	4	4	12
CAMKK1 (CAMKKA)	Binding	1	2	1	-10	0
CAMKK2 (CaMKK beta)	Binding	- 8	- 8	5	¥1	- 5
CDK8/cyclin C	Binding	23	27	20	9	4
CDK9/cyclin K	Binding	11	3	10	- 6	6
CLK4	Binding	35	7	19	7	5
DDR1	Binding	1	1	-3	0	2
DDR2	Binding	7	2	-1	4	5
DMPK	Binding	5	3		1	10
EPHA3	Binding	2	8	- 3	5	- 3

83TABLE 5c-continued

EPHA7	Binding	-3	-5	-1	1	10
KIT V654A	Binding	12			1	8
LIMK1	Binding	21	4	2	-6	-4
LIMK2	Binding	14	12	8	9	10
MAP2K1 (MEK1) S218D S222D	Binding	/////////////////////////////////////	4	- 5	1	2
MAP2K3 (MEK3)	Binding	12	18	9	0	24
MAP2K6 (MKK6) S207E T211E	Binding	64	3	4	- 6	1
MAP3K10 (MLK2)	Binding	20	3	1	2	9
MAP3K11 (MLK3)	Binding	- 5	2	4	-22	9
MAP3K14 (NIK)	Binding	-6	-13	_0	-12	-9
MAP3K2 (MEKK2)	Binding	13	0	- 8	1	6
MAP3K3 (MEKK3)	Binding	13	7	10	8	10
MAP3K5 (ASK1)	Binding	-15	-11	-4	-8	4
MAP3K7/MAP3K7IP1 (TAK1-TAB1)	Binding	2	2	2	-2	- 6
MKNK2 (MNK2)	Binding	19	2	2	2	13

MLCK (MLCK2)	Binding	1	9	10	6	14
MYLK (MLCK)	Binding	3	1	-0	0	- 0
NLK	Binding	56	3	-1	-4	-10
RIPK2	Binding	77	6	4	2	- 8
SLK	Binding	4	4	4	- 5	5
STK16 (PKL12)	Binding	2	- 4	-6	l.	- 3
STK17A (DRAK1)	Binding	1	0	-2	7	2
STK33	Binding	3	7	-5	-6	5
TAOK3 (JIK)	Binding	1	-5	-2	-3	4
TEC	Binding	15	1	14	14	- 5
TGFBR1 (ALK5)	Binding	65	7	10	7	3
TNK2 (ACK)	Binding	11	3	- 5	4	10
TTK	Binding	30	12	22	16	25
WEE1	Binding	20	1	1	-2	-14
WNK2	Binding	55	9	7	9	15
ZAK	Binding	75	27	33	4	- 8

Table 6 Comparison of selectivity of 13, 1NA-PP1 and 1NM-PPl. All kinases for which >40% inhibition was observed in a kinome wide Z'lyte screen (Life Technologies) are shown.

TABLE 6

Kinase tested	13	1NA-PP1	1NM-PP1
BMX	9	26	52
BTK		49	61
CSF1R (FMS)	4	40	28
CSNK1E (CK1 epsilon)	40		
EGFR (ErbB1) L858R		40	29
EGFR (ErbB1) T790M	4	48	38
EGFR (ErbB1) T790M L858R	10	65	53
EPHA1	15		
EPHA2	4	75	43
EPHA4	7		43
EPHA5	- 5		56
EPHA8	- 9	67	51
EPHB1	5	63	44
EPHB2	14	78	58
EPHB3	6	48	35
EPHB4	6	73	62
FGR	6	71	42

	B0000000000000000000000000000000000000			
FRK (PTK5)	5	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	47	
FYN	- 6	45	37	
HCK	3	59	31	
LCK	-18	52	35	
LYN A	8		55	
LYNB	14		55	
MAP4K4 (HGK)	18		56	
MAP4K5 (KHS1)	20	69	31	
MINK!	19		52	
PRKACA (PKA)	-4	12	41	
PRKCN (PKD3)	16	69	65	
PRKD1 (PKC mu)	18	1	56	
PRKD2 (PKD2)	19	59		
PRKGI	17.4	75	0	
PTK6 (Brk)	27		55	
RET	8	79	65	
RET Y791F	8	V/////////////////////////////////////	70	
SRC	-6	65	27	
SRMS (Srm)	10	61	7	
YES1	8	54	42	

TABLE 7

		c-Src variant IC ₅₀ (nM)		
5	Compound	ES1	ES2	ES3
10	NH ₂ NH ₂ N	111	63	131
15	3			
20	NH ₂ O N S O	150	207	424
25				
30	$_{ m NH_2}$	338	67	29
35	N N F			
40	13			

XIV. Kit

In some other embodiments, the present invention provides a kit comprising, a recombinant kinase described herein (see section (V) above) or a nucleic acid described herein (See section IX) and instructions for using the kit. The instructions for using the kit describe the steps set forth in a method provided herein (see section X, XI and XII).

In some embodiments, the present invention provides a kit for testing for inhibition of kinase activity comprising a heterocyclic compound, wherein the heterocyclic compound 55 comprises two or more fused rings and an electrophilic substituent, wherein at least one of the two or more fused rings comprises a nitrogen atom, and a cysteine substituted kinase wherein a gatekeeper amino acid residue within an ATP binding site of the kinase is replaced with a cysteine residue. XV. Examples

Chemical Synthesis. Reactions were performed in flame dried flasks under argon with magnetic stirring. All ¹H and ¹³C NMR spectra were recorded on a Varian Innova 400 spectrometer and referenced to solvent peaks. ¹H chemical shifts are reported in δ (ppm) as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) or br (broad). Low resolu-

30

45

50

55

88

tion mass spectra (LC/ESI-MS) were recorded on a Waters Micromass ZQ equipped with a Waters 2695 Separations Module and a XTerra MS C18 3.5 mm column (Waters). RP-HPLC was performed on a Varian ProStar solvent delivery system equipped with a Zorbax 300-SS C18 column using CH₃CN/H₂O/0.1% TFA (1-100% gradient) and monitoring at 260 nm.

EXAMPLE 1

Preparation of 3-(3-aminophenyl)-1-isopropyl-1Hpyrazolo[3,4-d]pyrimidin-4-amine (22)

This compound was prepared in a similar procedure to that used for (18).

EXAMPLE 2

Preparation of 3-(4-aminophenyl)-1-isopropyl-1Hpyrazolo[3,4-d]pyrimidin-4-amine (23)

This compound was prepared in a similar procedure to that used for (18).

EXAMPLE 3

Preparation of N-(3-(4-amino-1-isopropyl-1H-pyrazolo[3,4-d]pyrimidin-3-yl)phenyl)acrylamide (1)

A solution of tetrahydrofuran (20 mL), compound 22 (219 mg, 0.817 mmol) and diisoproylethylamine (156 μL, 0.895 mmol) was cooled to 0° C. Acryloyl chloride (67 μL, 0.828 mmol) was added and the reaction was allowed to proceed for 1 hour and afterwards concentrated in vacuo. The residue was dissolved in dichloromethane (20 mL) and washed with saturated sodium bicarbonate (20 mL). The aqueous layer was extracted with dichloromethane (2×20 mL). The combined organic layers were dried with MgSO₄, filtered and concentrated in vacuo. The product was purified by preparative RP-HPLC and lyophilized (70 mg, 26% yield): ¹H NMR (400 MHz, DMSO) δ 10.40 (s, 1H), 8.38 (s, 1H), 8.04 (s, 1H), 7.73 (d, J=8.0, 1H), 7.52 (t, J=7.9, 1H), 7.39 (d, J=7.7, 1H), 6.47 (dd, J=17.0, 10.1, 1H), 6.29 (dd, J=17.0, 2.0, 1H), 5.80 (dd, J=10.1, 2.0, 1H), 5.11 (hept, J=6.6, 1H), 1.51 (d, J=6.7, 6H); ¹³C NMR (100 MHz, DMSO) δ 163.47, 154.87, 151.90, 150.94, 144.73, 139.53, 132.54, 131.68, 129.88, 127.31, ²⁰ 123.42, 119.96, 119.22, 96.91, 48.80, 21.74; [M+H]⁺ calculated for $C_{17}H_{18}N_6O$ 323.1, found 323.5.

EXAMPLE 4

Preparation of N-(3-(4-amino-1-isopropyl-1H-pyrazolo[3,4-d]pyrimidin-3-yl)phenyl)ethenesulfonamide (3)

A solution of dichloromethane (2 mL), compound 22 (20 mg, 0.075 mmol) and triethylamine (11 µL, 0.079 mmol) was cooled to 0° C. 2-chloro-1-ethane sulfonyl chloride (7 μL, 0.067 mmol) was added and the reaction was allowed to 65 proceed for 1 hour prior to addition of saturated sodium bicarbonate (10 mL) and extraction with dichloromethane (3×10 mL). The combined organic layers were dried with

20

MgSO₄, filtered and concentrated in vacuo. The product was purified by preparative RP-HPLC and Iyophilized (5.6 mg, 23% yield): $^1\mathrm{H}$ NMR (400 MHz, DMSO) δ 10.22 (s, 1H), 8.31 (s, 1H), 7.49 (t, J=7.9, 1H), 7.45 (s, 1H), 7.38 (d, J=7.8, 1H), 7.27 (d, J=7.3, 1H), 6.86 (dd, J=16.4, 10.0, 1H), 6.17 (d, J=16.4, 1H), 6.08 (d, J=9.9, 1H), 5.08 (hept, J=6.7, 1H), 1.50 (d, J=6.7, 6H). $^{13}\mathrm{C}$ NMR (100 MHz, DMSO) δ 155.01, 151.96, 151.19, 144.29, 138.50, 136.32, 133.09, 130.22, 127.79, 123.73, 120.09, 119.20, 96.94, 48.85, 21.73; [M+H]+ 10 calculated for $\mathrm{C_{16}H_{18}N_6O_2S}$ 359.1, found 359.4.

EXAMPLE 5

Preparation of N-(3-(4-amino-1-isopropyl-1H-pyra-zolo[3,4-d]pyrimidin-3-yl)phenyl)-2-chloroacetamide (6)

A solution of THF (20 mL), compound 22 (200 mg, 0.75 55 mmol) and DIPEA (143 μL , 0.821 mmol) was cooled to 0° C. Chloroacetylchloride (54 μL , 0.67 mmol) was added and the reaction was allowed to proceed for 1 hour and afterwards concentrated in vacuo. The residue was dissolved in dichloromethane (20 mL) and washed with saturated sodium bicarbonate (20 mL). The aqueous layer was extracted with dichloromethane (2×20 mL). The combined organic layers were dried with MgSO₄, filtered and concentrated in vacuo. The product was purified by preparative RP-HPLC and lyophilized (30.4 mg, 13% yield): $^1{\rm H}$ NMR (400 MHz, DMSO)

 δ 10.57 (s, 1H), 8.41 (s, 1H), 7.95 (s, 1H), 7.67 (d, J=7.6, 1H), 7.53 (t, J=7.9, 1H), 7.41 (d, J=7.7, 1H), 5.11 (hept, J=6.7, 1H), 4.30 (s, 2H), 1.51 (d, J=6.7, 6H); $^{13}\mathrm{C}$ NMR (100 MHz, DMSO) δ 165.06, 154.82, 151.89, 150.90, 144.68, 139.03, 132.62, 128.28, 123.81, 120.02, 119.24, 96.92, 48.84, 43.55, 21.77; [M+H]+ calculated for $\mathrm{C_{16}H_{17}ClN_6O}$ 345.1, found 345.4

EXAMPLE 6

Preparation of N-(4-(4-amino-1-isopropyl-1H-pyrazolo[3,4-d]pyrimidin-3-yl)phenyl)ethenesulfonamide (5)

A solution of dichloromethane (5 mL), compound 23 (45 mg, 0.168 mmol) and triethylamine (71 μ L, 0.509 mmol) was cooled to 0° C. 2-chloro-1-ethane sulfonyl chloride (16 μ L, 0.148 mmol) was added and the reaction was allowed to proceed for 1 hour prior to addition of saturated sodium bicarbonate (10 mL) and extraction with dichloromethane (2×10 mL). The combined organic layers were dried with MgSO₄, filtered and concentrated in vacuo. The product was purified by preparative RP-HPLC and lyophilized (8.7 mg,

15

20

25

16% yield): $^1{\rm H}$ NMR (400 MHz, DMSO) δ 10.30 (s, 1H), 8.36 (s, 1H), 7.60 (d, J=8.5, 2H), 7.31 (d, J=8.6, 2H), 6.86 (dd, J=16.4, 9.9, 1H), 6.21 (d, J=16.4, 1H), 6.09 (d, J=9.9, 1H), 5.08 (hept, J=6.7, 2H), 1.49 (d, J=6.7, 6H); $^{13}{\rm C}$ NMR (100 MHz, DMSO) δ 155.44, 152.03, 151.64, 144.22, 138.54, 136.17, 129.25, 127.98, 127.41, 119.52, 96.95, 48.66, 21.75; [M+H]+ calculated for C_{1.6}H_{1.8}N₆O₂S 359.1, found 359.5.

EXAMPLE 7

Preparation of 2-(methoxy(3-nitrophenyl)methylene)malononitrile (25)

A solution of 3-nitrobenzoylchloride (25 g, 134 mmol), malononitrile (9.74 g, 147 mmol) and THF (140 mL) was cooled to 0° C. DIPEA (59 mL, 335 mmol) was added dropwise and the reaction was allowed to warm to room tempera- 45 ture and proceed for 2 hours. Afterwards, dimethylsulfate (38 mL, 399 mmol) was added and the temperature was raised to 70° C. for 4 hours. Next, the reaction mixture was brought to room temperature and allowed to proceed for an additional 12 hours. EtOAc (200 mL) was added to the reaction mixture in addition to brine (200 mL). The organic and aqueous layers were separated and the aqueous layer was extracted with EtOAc (4×25 mL). The combined organic layers were dried with MgSO₄ and concentrated in vacuo. The material was 55 purified over a silica column using chloroform:hexane (90: 10) initially and eluted with pure chloroform. After concentrating the fractions containing the product, a yellow oil was triturated with diethyl ether to yield a solid (11.3 g, 37% yield): ¹H NMR (400 MHz, DMSO) δ 8.63 (s, 1H), 8.51 (d, J=7.7, 1H), 8.16 (d, J=7.7, 1H), 7.94 (t, J=7.8, 1H), 3.93 (s, 3H); ¹³C NMR (100 MHz, DMSO) δ 183.66, 147.82, 135.23, 131.00, 129.55, 127.15, 124.08, 113.31, 111.87, 66.71, 61.87; $[M+H]^-$ calculated for $C_{11}H_7N_3O_3$ 228.0, found $_{65}$ 214.10 (product appears to hydrolyze during LC/MS analysis).

5-amino-1-isopropyl-3-(3-nitrophenyl)-1H-pyrazole-4-carbonitrile (26)

Compound 25 (5 g, 21.8 mmol), isopropylhydrazine hydrochloride (2.41 g, 21.8 mmol) (purchased from Ryan Scientific) and triethylamine (6.40 mL, 46.0 mmol) were allowed to react in ethanol (145 mL) at room temperature for 1 hr. After concentrating the reaction mixture, it was purified by silica chromatography using a chloroform/methanol solvent system (methanol gradient increased with time from 0-10%). The relevant fractions were concentrated in vacuo to yield a yellow powder (4.65 g, 79% yield): $^{1}\mathrm{H}$ NMR (400 MHz, DMSO) δ 8.59 (s, 1H), 8.24 (m, 2H), 7.78 (t, J=8.2, 1H), 6.82 (br, 2H), 4.53 (hept, J=6.5, 1H), 1.36 (d, J=6.5, 6H). $^{13}\mathrm{C}$ NMR (100 MHz, DMSO) δ 153.04, 148.76, 146.98, 133.97, 132.22, 131.19, 123.80, 120.37, 116.28, 70.74, 48.64, 22.02; [M+H]+ calculated for $\mathrm{C}_{13}\mathrm{H}_{11}\mathrm{N}_5\mathrm{O}_2$ 272.1, found 272.3.

EXAMPLE 9

Preparation of 5-amino-1-isopropyl-3-(3-nitrophenyl)-1H-pyrazole-4-carboxamide (27)

$$H_2N$$
 H_2N
 H_2N

35

40

Compound 26 (100 mg, 0.369 mmol) was added to concentrated sulfuric acid (1 mL) and heated to 65° C. for 3 hours. Afterwards, the reaction mixture was poured into ice water and the pH was brought to 14 with 10 M NaOH. The 3 aqueous material was extracted several times with dichloromethane. The combined organic layers were dried over MgSO4, filtered and concentrated to a solid (91 mg, 85% yield): $^1{\rm H}$ NMR (400 MHz, DMSO) δ 8.32 (s, 1H), 8.21 (d, $_{10}$ J=8.2, 1H), 7.98 (d, J=7.7, 1H), 7.69 (t, J=8.0, 1H), 6.20 (br, 2H), 4.51 (hept, 1H), 1.35 (d, J=6.5, 6H); $^{13}{\rm C}$ NMR (100 MHz, DMSO) δ 166.17, 149.37, 147.65, 145.50, 135.63, 134.92, 129.69, 122.79, 122.43, 95.43, 47.11, 21.50; [M+H] $^+$ $_{15}$ calculated for $\rm C_{13}H_{15}N_5O_3$ 290.1, found 290.0.

 $\begin{array}{l} (\mathrm{d},\mathrm{J=}7.8,\mathrm{1H}),8.23~(\mathrm{d},\mathrm{J=}8.1,\mathrm{1H}),8.13~(\mathrm{s},\mathrm{1H}),7.75~(\mathrm{t},\mathrm{J=}8.0,\mathrm{1H}),5.06~(\mathrm{hept},\mathrm{J=}6.6,\mathrm{1H}),1.52~(\mathrm{d},\mathrm{J=}6.7,\mathrm{6H}); ^{13}\mathrm{C}~\mathrm{NMR} \\ (100~\mathrm{MHz},\mathrm{DMSO})~\delta~157.77,~152.48,~148.16,~148.06,\\ 143.85,~133.58,~129.95,~123.05,~122.07,~103.02,~49.07,\\ 21.74;~[\mathrm{M+H}]^+~\mathrm{calculated~for~}\mathrm{C_{14}H_{13}N_5O_3}~300.1,~\mathrm{found} \\ 300.0. \end{array}$

EXAMPLE 11

Preparation of 3-(1-isopropyl-1H-pyrazolo[3,4-d] pyrimidin-3-yl)aniline (28)

EXAMPLE 10

Preparation of 1-isopropyl-3-(3-nitrophenyl)-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one (28)

$$H_2N$$
 NO_2
formamide
 160° C.

Compound 27 (1 g, 3.46 mmol) was added to formamide 60 (1.167 mL, 29.3 mmol) and heated to 160° C. for 40 hours. Afterwards, the reaction mixture was allowed to cool to room temperature and diluted into ice cold water. The mixture was filtered and a solid was collected (943 mg, 91% yield): $^{1}{\rm H}$ NMR (400 MHz, DMSO) δ 12.37 (s, 1H), 9.32 (s, 1H), 8.81

Compound 28 (2 g, 6.68 mmol) was mixed with thionyl chloride (12.5 mL, 171 mmol) and ten drops of DMF and heated to 80° C. for forty minutes. Afterwards, the reaction mixture was poured onto 300 mL of ice and the pH was adjusted to 8 with saturated sodium carbonate. The solution was extracted with dichloromethane (3×150 mL). The combined organic layers were dried over MgSO₄ and concentrated in vacuo (2.04 g, yield 96%). The resulting solid (1 g, 3.34 mmol) was dissolved in MeOH/EtOAc (30 mL/20 mL) and reacted with 10% Pd/C (540 mg) and triethylamine (466 μL, 3.34 mmol) under a H₂ atmosphere for 24 hours. The reaction mixture was filtered over celite and concentrated. The material was resuspended in dichloromethane (100 mL),

25

30

which was washed with saturated sodium bicarbonate (2×100 mL) prior to drying with MgSO $_4$ and concentrating in vacuo. The resulting solid was purified over silica using a dichloromethane/methanol (0-5%) solvent system (487 mg, 58% 5 yield): 1 H NMR (400 MHz, DMSO) δ 9.59 (s, 1H), 9.02 (s, 1H), 7.34 (s, 1H), 7.23 (d, J=7.6, 1H), 7.18 (t, J=7.7, 1H), 6.66 (d, J=7.7, 1H), 5.30 (br, 2H), 5.21 (kept, J=6.7, 1H), 1.56 (d, J=6.7, 6H); 13 C NMR (100 MHz, DMSO) δ 154.60, 153.03, 151.87, 149.28, 143.17, 132.14, 129.59, 114.65, 114.32, 112.06, 111.85, 48.53, 21.72; [M+H] $^+$ calculated for $C_{14}H_{15}N_5$ 254.1, found 254.0.

EXAMPLE 12

Preparation of N-(3-(1-isopropyl-1H-pyrazolo[3,4-d] pyrimidin-3-yl)phenyl)acrylamide (2)

Compound 2 was prepared by the same procedure that was used for compound 1 (49% yield): $^1\mathrm{H}$ NMR (400 MHz, DMSO) δ 10.36 (s, 1H), 9.66 (s, 1H), 9.08 (s, 1H), 8.41 (t, J=1.8, 1H), 7.84 (m, 2H), 7.52 (t, J=7.9, 1H), 6.48 (dd, J=17.0, 60 10.0, 1H), 6.32 (dd, J=17.0, 2.0, 1H), 5.81 (dd, J=10.0, 2.0, 1H), 5.24 (kept, J=6.6, 1H), 1.58 (d, J=6.7, 6H); $^{13}\mathrm{C}$ NMR (100 MHz, DMSO) δ 163.39, 154.53, 152.74, 151.97, 142.36, 139.75, 132.03, 131.77, 129.75, 127.24, 121.84, 65 119.79, 117.31, 111.98, 48.81, 21.73; [M+H]+ calculated for $\mathrm{C_{17}H_{17}N_5O}$ 308.1, found 308.6.

Preparation of N-(3-(1-isopropyl-1H-pyrazolo[3,4-d] pyrimidin-3-yl)phenyl)ethenesulfonamide (4)

Compound 4 was prepared by the same procedure that was used for compound 3 (18% yield): $^1\mathrm{H}$ NMR (400 MHz, DMSO) δ 10.17 (s, 1H), 9.61 (s, 1H), 9.08 (s, 1H), 7.90 (t, J=1.9, 1H), 7.82 (d, J=7.7, 1H), 7.49 (t, J=7.9, 1H), 7.29 (ddd, J=8.2, 2.2, 0.9, 1H), 6.87 (dd, J=16.4, 9.9, 1H), 6.17 (d, J=16.4, 1H), 6.07 (d, J=9.9, 1H), 5.23 (hept, J=6.7, 1H), 1.57 (d, J=6.7, 6H); $^{13}\mathrm{C}$ NMR (100 MHz, DMSO) δ 154.56, 152.69, 151.97, 141.98, 138.59, 136.20, 132.46, 130.16, 127.98, 122.09, 119.78, 117.64, 111.94, 48.89, 21.71; [M+H] $^+$ calculated for $\mathrm{C}_{16}\mathrm{H}_{17}\mathrm{N}_5\mathrm{O}_2\mathrm{S}$ 344.11, found 344.2.

EXAMPLE 14

Preparation of N-(3-((4-amino-1-isopropyl-1H-pyrazolo[3,4-d]pyrimidin-3-yl)methyl)phenyl)acrylamide (7)

A solution of THF (20 mL), compound 30 (200 mg, 0.708 mmol) (prepared as in Dar et al. {Dar, 2008 #18}) and N,Ndiisopropylethylamine (136 µL, 0.781 mmol) was cooled 0° C., at which point freshly distilled acryloyl chloride (52 µL, 0.642 mmol) was added. After one hour, the reaction mixture was concentrated in vacuo. The material was resuspended in $_{\ 20}$ dichloromethane (20 mL), which was washed with saturated sodium bicarbonate (20 mL). The aqueous layer was extracted with dichloromethane (3×20 mL) and the organic layers were subsequently combined, dried over MgSO₄, filtered and concentrated to a solid. The material was purified by RP-HPLC and lyophilized to a white powder (113 mg, 47% yield): ¹H NMR (400 MHz, DMSO) 10.06 (s, 1H), 8.33 (s, 1H), 7.54 (s, 1H), 7.50 (d, J=8.1, 1H), 7.24 (t, J=7.9, 1H), 6.96 (d, J=7.7, 1H), 6.40 (dd, J=17.0, 10.1, 1H), 6.22 (dd, J=17.0, 2.0, 1H), 5.72 (dd, J=10.1, 1.9, 1H), 4.99 (hept, J=6.5, 1H), 30 4.40 (s, 2H), 1.46 (d, J=6.7, 6 H); ¹³C NMR (100 MHz, DMSO) 8 163.06, 153.94, 151.30, 149.68, 144.69, 139.16, 139.08, 131.86, 128.82, 126.78, 123.59, 119.34, 117.51, 97.90, 48.74, 33.03, 21.70; [M+H]+ calculated for C₁₈H₂₀N₆O 337.2, found 337.4.

EXAMPLE 15

Preparation of N-(3-((4-amino-1-isopropyl-1H-pyrazolo[3,4-d]pyrimidin-3-yl)methyl)phenyl)ethenesulfonamide (9)

A solution of dichloromethane (20 mL), compound 30 (190 mg, 0.673 mmol) and triethylamine (188 µL, 1.35 mmol) was cooled to 0° C. 2-chloro-1-ethane sulfonyl chloride (70 µL, 0.670 mmol) was added and the reaction was allowed to proceed for 1 hour prior to addition of saturated sodium bicarbonate (20 mL) and extraction with dichloromethane (3×20 mL). The combined organic layers were dried with MgSO₄, filtered and concentrated in vacuo. The 10 product was purified by preparative RP-HPLC and lyophilized (14 mg, 6% yield): ¹H NMR (400 MHz, DMSO) δ 9.95 (s, 1H), 8.31 (s, 1H), 7.21 (t, J=8.1, 1H), 6.97 (m, 3H), 6.69 (dd, J=16.4, 9.9, 1H), 5.97 (d, J=16.5, 1H), 5.93 (d, J=9.9, 1H), 5.00 (hept, J=6.7, 1H), 4.38 (s, 2H), 1.46 (d, J=6.7, 6H); ¹³C NMR (100 MHz, DMSO) δ 154.31, 151.46, 150.23, 144.31, 137.91, 136.26, 136.16, 129.25, 127.42, 123.79, 119.26, 117.52, 97.91, 48.59, 32.81, 21.70; [M+H]⁺ calculated for C₁₇H₂₀N₆O₂S 373.1, found 373.4.

EXAMPLE 16

Preparation of N-(4-((4-amino-1-isopropyl-1H-pyrazolo[3,4-d]pyrimidin-3-yl)methyl)phenyl)acrylamide

A solution of THF (20 mL), compound 31 (200 mg, 0.708 mmol) (prepared as in Dar et al. {Dar, 2008 #18}) and N,Ndiisopropylethylamine (136 μL, 0.781 mmol) was cooled 0° C., at which point freshly distilled acryloyl chloride (52 µL,

40

0.642 mmol) was added. After one hour, the reaction mixture was concentrated in vacuo. The material was resuspended in dichloromethane (20 mL), which was washed with saturated sodium bicarbonate (20 mL). The aqueous layer was extracted with dichloromethane (3×20 mL) and the organic layers were subsequently combined, dried over MgSO₄, filtered and concentrated to a solid. The material was purified by RP-HPLC and lyophilized to a white powder (78 mg, 30% yield): ¹H NMR (400 MHz, DMSO) δ 10.09 (s, 1H), 8.31 (s, 1H), 7.57 (d, J=8.5, 2H), 7.18 (d, J=8.5, 2H), 6.41 (dd, J=17.0, 10.1, 1H), 6.22 (dd, J=17.0, 2.1, 1H), 5.73 (dd, J=10.1, 2.1, 1H), 5.00 (hept, J=6.7, 1H), 4.36 (s, 3H), 1.44 (d, J=6.7, 6H); ¹³C NMR (100 MHz, DMSO) δ 163.0, 153.9, 151.3, 149.6, 145.1, 137.4, 133.4, 131.9, 128.7, 126.7, 119.5, 97.8, 48.7, 32.5, 21.6; $[M+H]^+$ calculated for $C_{18}H_{20}N_6O$ 337.2, found 337.4.

EXAMPLE 17

Preparation of N-(4-((4-amino-1-isopropyl-1H-pyra-zolo[3,4-d]pyrimidin-3-yl)methyl)phenyl)ethene-sulfonamide (10)

A solution of dichloromethane (20 mL), compound 31 60 (200 mg, 0.708 mmol) and triethylamine (200 $\mu L, 1.43$ mmol) was cooled to 0° C. 2-chloro-1-ethane sulfonyl chloride (70 $\mu L, 0.670$ mmol) was added and the reaction was allowed to proceed for 1 hour prior to addition of saturated sodium bicarbonate (20 mL) and extraction with dichloromethane (3×20 mL). The combined organic layers were

dried with MgSO₄, filtered and concentrated in vacuo. The product was purified by preparative RP-HPLC and lyophilized (14 mg, 6% yield): $^1\mathrm{H}$ NMR (400 MHz, DMSO) δ 9.91 (s, 1H), 8.30 (s, 1H), 7.16 (d, J=8.3, 2H), 7.05 (d, J=8.4, 2H), 6.74 (dd, J=16.4, 9.9, 1H), 6.07 (d, J=16.4, 1H), 6.00 (d, J=10.0, 1H), 5.03-4.94 (m, 1H), 4.34 (s, 2H), 1.44 (d, J=6.6, 6H); $^{13}\mathrm{C}$ NMR (100 MHz, DMSO) δ 154.0, 151.4, 149.8, 144.7, 136.3, 136.0, 133.9, 129.3, 127.5, 120.0, 97.9, 48.6, 32.3, 21.7; [M+H]+ calculated for $\mathrm{C_{17}H_{20}N_6O_2S}$ 373.1, found 373.4.

EXAMPLE 18

Preparation of N-(3-((4-amino-1-isopropyl-1H-pyra-zolo[3,4-d]pyrimidin-3-yl)methyl)phenyl)ethane-sulfonamide (11)

A solution of tetrahydrofuran (5 mL), compound 30 (50 mg, 0.177 mmol) and diisopropylethylamine (34 μL, 0.195 mmol) was cooled to 0° C. Ethanesulfonylchloride (15 μL, 0.159 mmol) was added and the reaction was allowed to proceed for one hour. After one hour, the reaction mixture was concentrated in vacuo. The material was resuspended in dichloromethane (10 mL), which was washed with saturated sodium bicarbonate (10 mL). The aqueous layer was extracted with dichloromethane (3×10 mL) and the organic layers were subsequently combined, dried over MgSO₄, filtered and concentrated to a solid. The combined organic layers were dried with MgSO₄, filtered and concentrated in vacuo. The product was purified by preparative RP-HPLC

15

20

25

30

101

and lyophilized (25 mg, 38% yield): $^1{\rm H}$ NMR (400 MHz, DMSO) δ 9.72 (s, 1H), 8.34 (s, 1H), 7.23 (t, J=7.8, 1H), 7.09 (s, 1H), 7.03 (d, J=7.9, 1H), 6.98 (d, J=7.6, 1H), 5.01 (hept, J=6.7, 1H), 4.40 (s, 2H), 3.01 (q, J=7.3, 2H), 1.46 (d, J=6.7, 6H), 1.13 (t, J=7.3, 3H); $^{13}{\rm C}$ NMR (100 MHz, DMSO) δ 154.11, 151.38, 150.04, 144.45, 139.67, 138.54, 129.28, 123.66, 119.19, 117.45, 97.89, 48.57, 44.89, 32.84, 21.68, 7.90; [M+H]+ calculated for $\rm C_{17}H_{22}N_6O_2S$ 375.1, found 375.6

EXAMPLE 19

Preparation of N-(3-((4-amino-1-isopropyl-1H-pyra-zolo[3,4-d]pyrimidin-3-yl)methyl)phenyl)-2-chloro-acetamide (12)

$$\begin{array}{c} NH_2 \\ NH_2 \\ NH_2 \end{array} \xrightarrow{\begin{array}{c} O \\ DIPEA\ 0^\circ\ C. \\ \end{array}} \\ THF \end{array}$$

A solution of tetrahydrofuran (10 mL), compound 30 (100 mg, 0.354 mmol) and diisopropylethylamine (68 μ L, 0.390 50 mmol) was cooled to 0° C. Chloroacetylchloride (25.4 μL, 0.313 mmol) was added and the reaction was allowed to proceed for one hour. After one hour, the reaction mixture was concentrated in vacuo. The material was resuspended in 55 dichloromethane (10 mL), which was washed with saturated sodium bicarbonate (10 mL). The aqueous layer was extracted with dichloromethane (3×10 mL) and the organic layers were subsequently combined, dried over MgSO₄, filtered and concentrated to a solid. The combined organic layers were dried with MgSO₄, filtered and concentrated in vacuo. The product was purified by preparative RP-HPLC and lyophilized (35 mg, 31% yield): ¹H NMR (400 MHz, DMSO) δ 10.22 (s, 1H), 8.32 (s, 1H), 7.46 (s, 1H), 7.41 (d, 65 J=8.2, 1H), 7.25 (t, J = 7.8, 1H), 6.99 (d, J=7.6, 1H), 5.00 (hept, J=6.7, 1H), 4.40 (s, 2H), 4.20 (s, 2H), 1.46 (d, J=6.7,

102

6H); $^{13}\mathrm{C}$ NMR (100 MHz, DMSO) δ 164.5, 154.0, 151.3, 150.0, 144.6, 139.2, 138.6, 128.9, 124.0, 119.3, 117.5, 97.9, 48.7, 43.6, 33.0, 21.7; [M+H]+ calculated for $\mathrm{C_{17}H_{19}ClN_6O}$ 359.1, found 359.2.

EXAMPLE 20

Preparation of 2-(methoxy(3-bromobenzyl)methylene)malononitrile (33)

A solution of 3-bromoacetyl acetic acid (5 g, 23.3 mmol) was mixed with oxalyl chloride (10 mL, 121 mmol) in dichloromethane (75 mL) at room temperature for 30 minutes and then concentrated in vacuo. To the resulting solid was added malononitrile (1.69 g, 25.6 mmol) and THF (25 mL). After cooling to 0° C., DIPEA (10.1 mL, 58.1 mmol) was added dropwise and the reaction was allowed to warm to room temperature and proceed for 2 hours. Afterwards, dimethylsulfate (6.60 mL, 69.3 mmol) was added and the temperature was raised to 70° C. for 4 hours. Next, the reaction mixture was brought to room temperature and allowed to proceed for an additional 12 hours. EtOAc (50 mL) was added to the reaction mixture in addition to brine (50 mL). The organic and aqueous layers were separated and the aqueous layer was extracted with EtOAc (4×25 mL). The combined organic layers were dried with MgSO₄ and concentrated in vacuo. The material was purified over a silica column using chloroform:hexane (90:10) initially and eluted with pure chloroform. After concentrating the fractions containing the product, an amber oil was triturated with diethyl ether to yield a solid (2.057 g, 32% yield): ¹H NMR (400 MHz, DMSO) δ 7.56 (m, 2H), 7.38 (t, J=7.7, 1H), 7.31 (d, J=7.7, 1H), 4.19 (s, T)2H), 4.01 (s, 3H); ¹³C NMR (100 MHz, DMSO) δ 187.96, 135.22, 131.33, 131.18, 130.77, 127.18, 122.32, 113.75, 112.03, 65.62, 60.00, 35.60; [M+H] calculated for C₁₂H₉BrN₂O 274.9, 276.9 (50:50), found 274.8, 276.5.

50

55

60

-continued

Preparation of 5-amino-3-(3-bromobenzyl)-1-isopropyl-1H-pyrazole-4-carbonitrile (34)

33

$$B_r$$
 H_2N
 34

Compound 33 (3.124 g, 11.3 mmol), isopropylhydrazine hydrochloride (1.27 g, 11.5 mmol) (purchased from Ryan Scientific) and triethylamine (6.40 mL, 46.0 mmol) were allowed to react in ethanol (75 mL) at room temperature for 1 hr. After concentrating the reaction mixture, it was purified by 35 silica chromatography using a chloroform/methanol solvent system (methanol gradient increased with time from 0-10%). The relevant fractions were concentrated in vacuo to yield a yellow powder (3.15 g, 87% yield): ¹H NMR (400 MHz, DMSO) 8 7.41 (m, 2H), 7.26 (td, J=7.7, 1.2, 1H), 7.21 (dt, 40 J=7.7, 1.3, 1H), 6.50 (s, 2H), 4.38 (hept, J=6.5, 1H), 3.81 (s, 2H), 1.27 (d, J=6.5, 6H); ¹³C NMR (100 MHz, DMSO) δ 151.01, 150.15, 141.24, 131.05, 130.53, 129.16, 127.45, 121.55, 115.16, 71.77, 47.24, 32.88, 21.35; [M+H]⁺ calculated for C₁₄H₁₅BrN₄ 319.0, 321.0 found 318.9: 321.0.

EXAMPLE 22

Preparation of 3-(3-bromobenzyl)-1-isopropyl-1Hpyrazolo[3,4-d]pyrimidin-4-amine

NC
$$N$$
 formamide 160° C.

Compound 34 (6.09 g, 19.1 mmol) was added to formamide (26.6 mL, 668 mmol) and heated to 160° C. for 27 hours. Afterwards, the reaction mixture was allowed to cool to room temperature and diluted into ice cold water (50 mL). A vis-20 cous material was filtered and dissolved in EtOAc. This solution was washed with brine and concentrated in vacuo (6.23 g, 91% yield): ¹H NMR (400 MHz, DMSO) δ 8.13 (s, 1H), 7.49 (s, 1H), 7.37 (dt, J=7.5, 1.7, 1H), 7.22 (m, 2H), 4.95 (hept, J=6.6, 1H), 4.38 (s, 2H), 1.43 (d, J=6.7, 6H); ¹³C NMR (100) MHz, DMSO) δ 157.90, 155.39, 153.22, 142.01, 141.86, 131.16, 130.52, 129.00, 127.40, 121.56, 98.39, 47.76, 32.66, 21.71; $[M+H]^+$ calculated for $C_{15}H_{16}BrN_5$ 346.0, 348.0 found 346.0: 348.0.

EXAMPLE 23

Preparation of 3-(3-acetylbenzyl)-1-isopropyl-1Hpyrazolo[3,4-d]pyrimidin-4-amine (14)

$$NH_2$$
 NH_2
 $Pd(PPh_3)_4$
 $Toluene$

Anhydrous toluene (10 mL) was degassed prior to addition of 34 (3.5 g, 10.1 mmol) Tributyl(1-ethoxyvinyl)tin (4.081 65 mL, 12.1 mmol), tetrakis(triphenylphosphine) palladium (1.169 g, 10 mol %) and heating to 120° C. After 16 hours, the reaction mixture was concentrated in vacuo. Next, a THF/1M

20

25

30

35

HCl solution (33 mL/10 mL) was added to the brownish material and the reaction was allowed to proceed at room temperature for 12 hours. Afterwards, EtOAc (175 mL) was added to the mixture, which was washed with saturated sodium bicarbonate (700 mL) and extracted with 1 M HCl ⁵ (2×525 mL). The pH was adjusted to a value of 13 and the mixture was extracted with EtOAc (2×525 mL). The organic layers were dried with sodium sulfate and concentrated in vacuo. The material was purified by silica chromatography using a chloroform/methanol solvent system (methanol gradient increased with time from 0-8%). The relevant fractions were concentrated in vacuo to yield a solid (2.035 g, 65% yield): ¹H NMR (400 MHz, DMSO) δ 8.13 (s, 1H), 7.91 (s, 1H), 7.79 (d, J=7.5, 1H), 7.48 (d, J=7.7, 1H), 7.43 (t, J=7.6, 1H), 4.97 (hept, J=6.7, 1H), 4.46 (s, 2H), 2.53 (s, 3H), 1.44 (d, J=6.7, 6H); ¹³C NMR (100 MHz, DMSO) δ 197.80, 157.96, 155.40, 153.24, 142.22, 139.80, 136.84, 133.15, 128.75, 128.10, 126.32, 98.40, 47.71, 32.94, 26.70, 21.77; [M+H]⁺ calculated for $C_{17}H_{19}N_5O$ 310.1, found 310.0.

EXAMPLE 24

Preparation of 3-(3-acetylbenzyl)-1-isopropyl-1Hpyrazolo[3,4-d]pyrimidin-4-di-t-butoxycarbonyl amine (14)

Compound 14, di-tert-butyldicarbonate and dimethylaminopyridine were mixed and allowed to react for 3 hours at room temperature. Afterwards, the reaction mixture was diluted with EtOAc and washed with 1 M HCl and brine. The organic solution was dried with MgSO₄ and concentrated in vacuo. The material was purified over a silica column using a hexane/ethyl acetate solvent system (1.834 g, 55% yield): ¹H NMR (400 MHz, DMSO) δ 8.92 (s, 1H), 7.81 (d, J=7.9, 1H), 7.77 (s, 1H), 7.41 (t, J=7.7, 1H), 7.29 (d, J=7.7, 1H), 5.20 (hept, J=6.7, 1H), 4.25 (s, 2H), 2.53 (s, 3H), 1.55 (d, J=6.7, 65 6H), 1.28 (s, 18H). ¹³C NMR (100 MHz, DMSO) δ 197.42, 154.90, 154.28, 153.19, 149.83, 141.77, 138.25, 136.88,

35

106

132.65, 128.85, 127.74, 126.52, 109.01, 83.67, 49.08, 33.51, 27.19, 26.58, 21.63; $[M+H]^+$ calculated for $C_{27}H_{35}N_5O_5$ 510.2, found 510.1.

EXAMPLE 25

Preparation of 1-(3-((4-amino-1-isopropyl-1H-pyrazolo[3,4-d]pyrimidin-3-yl)methyl)phenyl)-2-fluoroethanone (13)

Compound 35 (253 mg, 0.496 mmol) was mixed with anhydrous THF (2 mL) and cooled to -78° C., whereupon 1.0 M LHMDS in THF (0.645 mL, 0.645 mmol) was added dropwise via syringe and allowed to react for 15 minutes. N-fluorobenzenesulfinimide (250 mg, 0.794 mmol) in THF (2 mL) was then added dropwise and the reaction mixture was allowed to come to room temperature over 30 minutes. The reaction mixture was cooled to -78° C. and saturated ammonium chloride (100 mL) was added dropwise. The reaction mixture was extracted with EtOAc (70 mL), and the resulting organic layer was washed with saturated sodium bicarbonate (1×70 mL) and brine (1×70 mL). The organic layer was concentrated in vacuo to give a yellow oil. The resulting product was purified over a silica column (hexane/ethyl acetate solvent system) and fractions containing the monofluorinated product and unreacted material (35) were pooled (they were inseparable). This combined mixture (93 mg) was reacted with TFA (1.5 mL) in DCM for 5 hours at room temperature and then concentrated in vacuo. The Boc-deprotected material was then resuspended in EtOAc (30 mL) and washed with saturated sodium bicarbonate (1×30 mL) and brine (1×30 mL). After concentrating the organic layer, the monofluorinated product was purified by preparative TLC using a 8% MeOH/CHCl₃ solvent system (22 mg, 14% yield): ¹H NMR (400 MHz, DMSO) δ 9.91 (s, 1H), 8.30 (s, 1H), 7.16 (d, J=8.3, 2H), 7.05 (d, J=8.4, 2H), 6.74 (dd, J=16.4, 9.9, 1H),6.07 (d, J=16.4, 1H), 6.00 (d, J=10.0, 1H), 5.03-4.94 (m, 1H), 4.34 (s, 2H), 1.44 (d, J=6.6, 6H); ¹³C NMR (100 MHz, DMSO) δ 154.0, 151.4, 149.8, 144.7, 136.3, 136.0, 133.9,

10

30

45

50

55

129.3, 127.5, 120.0, 97.9, 48.6, 32.3, 21.7; [M+H]+ calculated for $C_{17}H_{18}FN_5O$ 328.1, found 328.1.

EXAMPLE 26

Preparation of N-(3-((4-amino-1-methyl-1H-pyrazolo[3,4-d]pyrimidin-3-yl)methyl)phenyl)ethenesulfonamide (15)

Compound 36 was prepared by the method of Dar et al. {Dar, 2008 #18}. Compound 15 was prepared by the same method used for compound 9 (22% yield): ¹H NMR (400 MHz, DMSO) δ 9.94 (s, 1H), 8.36 (s, 1H), 7.21 (t, J=7.8, 1H), 6.98 (m, 3H), 6.71 (dd, J=16.4, 9.9, 1H), 6.03 (d, J=16.4, 1H), 40 $5.97 (d, J=9.9, 1H), 4.36 (s, 2H), 3.91 (s, 3H); {}^{13}C NMR (100)$ MHz, DMSO) δ 154.2, 152.3, 150.4, 144.6, 139.4, 137.9, 136.2, 129.2, 127.6, 124.0, 119.4, 117.5, 97.8, 33.7, 32.8; $[M+H]^+$ calculated for $C_{15}H_{16}N_6O_2S$ 345.1, found 345.4.

EXAMPLE 27

Preparation of N-(3-((4-amino-1-tert-butyl-1H-pyrazolo[3,4-d]pyrimidin-3-yl)methyl)phenyl)ethenesulfonamide (16)

$$NH_2$$
 NH_2
 NH_2
 NH_2
 NEt_3
 DCM

108 -continued NH_2 16

Compound 37 was prepared by the method of Dar et al. {Dar, 2008 #18}. Compound 16 was prepared by the same method used for compound 9 (10% yield): ¹H NMR (400 MHz, DMSO) δ 9.95 (s, 1H), 8.30 (s, 1H), 7.21 (t, J=8.1, 1H), 6.97 (m, 3H), 6.69 (dd, J=16.4, 9.9, 1H), 5.94 (m, 2H), 4.36 (s, 4.36)²⁰ 2H), 1.71 (s, 9H); ¹³C NMR (100 MHz, DMSO) δ 154.5, 152.3, 149.6, 142.5, 139.6, 137.9, 136.2, 129.1, 127.4, 123.8, 119.1, 117.4, 99.1, 60.2, 32.8, 28.8; [M+H]+ calculated for C₁₈H₂₂N₆O₂S 387.2, found 387.5.

EXAMPLE 28

Preparation of N-(3-((4-amino-1-cyclopentyl-1Hpyrazolo[3,4-d]pyrimidin-3-yl)methyl)phenyl)ethenesulfonamide (17)

$$\begin{array}{c} NH_2 \\ NH_2 \\ N \\ N \end{array} \begin{array}{c} O \\ NEt_3 \\ DCM \end{array}$$

Compound 38 was prepared by the method of Dar et al. {Dar, 2008 #18}. Compound 17 was prepared by the same method used for compound 9 (18% yield): ¹H NMR (400 MHz, DMSO) δ 9.95 (s, 1H), 8.37 (d, J=6.8, 1H), 7.21 (t, J=8.0, 1H), 6.98 (m, 3H), 6.69 (dd, J=16.4, 9.9, 1H), 5.98 (d, 65 J=16.4, 1H), 5.93 (d, J=9.9, 1H), 5.18 (t, J=7.2, 1H), 4.38 (s, 2H), 2.08 (m, 2H), 1.98 (m, 2H), 1.88 (m, 2H), 1.68 (m, 2H);

¹³C NMR (100 MHz, DMSO) δ 153.7, 151.7, 149.6, 144.7,

10

55

60

65

139.5, 137.9, 136.2, 129.1, 127.4, 123.8, 119.2, 117.5, 97.9, 57.2, 32.8, 31.9, 24.3; [M+H]+ calculated for $\rm C_{19}H_{22}N_6O_2S$ 399.2, found 399.4.

EXAMPLE 29

Preparation of N1-(6,7-dimethoxyquinazolin-4-yl) benzene-1,3-diamine

$$\begin{array}{c} CI \\ NH_2 \\ NH_2 \\ i PrOH \end{array}$$

Compound 39 was prepared by a previously described method {Perera, 2008 #110}. Compound 39 (300 mg, 1.34 mmol) and 1,3-phenylenediamine (1.78 g, 16.5 mmol) were heated to 90° C. in isopropanol and allowed to react for 1.5 hours, after which the reaction was brought to room temperature. The resulting green, solid product was collected by filtration and washed with cold isopropanol (173 mg, 44% yield): $^1{\rm H}$ NMR (400 MHz, DMSO) δ 11.01 (br, 1H), 8.72 (s, 1H), 8.24 (s, 1H), 7.36 (s, 1H), 7.15 (t, J=8.0, 1H), 7.00 (s, 1H), 6.93 (d, J=7.9, 1H), 6.62 (d, J=8.0, 1H), 3.99 (s, 3H), 3.97 (s, 3H); $^{13}{\rm C}$ NMR (100 MHz, DMSO) δ 157.85, 155.85, 149.92, 149.21, 137.73, 129.08, 113.52, 112.92, 110.99, 45 107.35, 103.60, 100.86, 56.73, 56.33; [M+H]+ calculated for $C_{16}H_{16}N_4O_2$ 297.1, found 297.4.

EXAMPLE 30

Preparation of N-(3-(6,7-dimethoxyquinazolin-4-ylamino)phenyl)acrylamide (18)

-continued

O

N

18

A solution of THF (7 mL), compound 40 (75 mg, 0.253 $_{15}$ mmol) and 1N,N-diisopropylethylamine (96 μL , 0.551 mmol) was cooled 0° C., at which point freshly distilled acryloyl chloride (19 µL, 0.230 mmol) was added. After one hour, the reaction mixture was concentrated in vacuo. The material was resuspended in dichloromethane (10 mL), ²⁰ which was washed with saturated sodium bicarbonate (10 mL). The aqueous layer was extracted with dichloromethane (2×10 mL) and the organic layers were subsequently combined, dried over MgSO₄, filtered and concentrated to a solid. 25 The material was purified by RP-HPLC and lyophilized to a powder (40 mg, 50% yield): ¹H NMR (400 MHz, DMSO) δ 10.81 (br, 1H), 10.31 (s, 1H), 8.78 (s, 1H), 8.17 (s, 1H), 8.06 (s, 1H), 7.41 (m, 3H), 7.25 (s, 1H), 6.47 (dd, J=17.0, 10.1, 1H), 6.28 (dd, J=17.0, 1.9, 1H), 5.79 (dd, J=10.1, 1.9, 1H), 4.00 (s, 6H); ¹³C NMR (100 MHz, DMSO) δ 163.32, 158.05, 156.18, 150.11, 149.32, 139.48, 137.32, 131.73, 129.02, 127.18, 119.88, 117.10, 115.49, 107.30, 103.23, 100.68, 56.57, 56.45; $[M+H]^+$ calculated for $C_{19}H_{18}N_4O_3$ 351.1, found 351.4.

EXAMPLE 31

Preparation of N-(3-(6,7-dimethoxyquinazolin-4-ylamino)phenyl)ethenesulfonamide (19)

30

35

A solution of dichloromethane (10 mL), compound 40 (97 mg, 0.327 mmol) and triethylamine (138 μL, 0.989 mmol) was cooled to 0° C. 2-chloro-1-ethane sulfonyl chloride (30 μL, 0.287 mmol) was added and the reaction was allowed to proceed for 1 hour prior to removal of a greenish precipitate and addition of saturated sodium bicarbonate (10 mL) and extraction with dichloromethane (2×10 mL). The combined organic layers were dried with MgSO₄, filtered and concentrated in vacuo. The product (organic layers and green precipitate combined) was purified by preparative RP-HPLC and lyophilized (40 mg, 36% yield): ¹H NMR (400 MHz, DMSO) δ 10.71 (br, 1H), 10.20 (s, 1H), 8.76 (s, 1H), 8.02 (s, 1H), 7.52 (s, 1H), 7.39 (m, 2H), 7.25 (s, 1H), 7.06 (m, 1H), 6.82 (dd, 15) J=16.4, 9.9, 1H), 6.18 (d, J=16.4, 1H), 6.10 (d, J=9.9, 1H), 3.99 (s, 6H); ¹³C NMR (100 MHz, DMSO) δ 157.94, 156.12, 150.06, 149.43, 138.29, 137.85, 136.06, 129.40, 128.11, 119.92, 117.13, 115.32, 107.41, 103.15, 100.96, 56.55, 56.42; $[M+H]^+$ calculated for $C_{18}H_{18}N_4O_4S$ 387.1, found

EXAMPLE 32

387.5.

Preparation of N1-(6,7-dimethoxyquinazolin-4-yl) benzene-1,4-diamine (41)

Cl
$$H_2N$$
 NH_2 $iPrOH$ NH_2 $NH_$

Compound 39 was prepared by a previously described method {Perera, 2008 #110}. Compound 39 (600 mg, 2.68 mmol) and 1,3-phenylenediamine (3.57 g, 33 mmol) were heated to 90° C. in isopropanol and allowed to react for 1.5 hours, after which the reaction was brought to room temperature. The resulting solid product was collected by filtration and washed with cold isopropanol (775 mg, 98% yield): 1 H NMR (400 MHz, DMSO) δ 10.38 (br, 1H), 8.59 (s, 1H), 8.00 (s, 1H), 7.28 (d, J=8.6, 2H), 7.20 (s, 1H), 6.79 (s, 1H), 6.66 (d, 5=8.6, 2H), 3.96 (s, 6H); 13 C NMR (100 MHz, DMSO) δ 157.31, 155.07, 150.47, 149.39, 145.88, 126.53, 125.38,

112

113.97, 107.62, 103.05, 102.79, 56.49, 56.10; [M+H]⁺ calculated for $\rm C_{16}H_{16}N_4O_2$ 297.1, found 297.4.

EXAMPLE 33

Preparation of N-(4-(6,7-dimethoxyquinazolin-4-ylamino)phenyl)ethenesulfonamide (20)

$$\begin{array}{c} & & & \\ & &$$

20

A solution of dichloromethane (10 mL), compound 41 (100 mg, 0.337 mmol) and triethylamine (141 µL, 1.02 mmol) was cooled to 0° C. 2-chloro-1-ethane sulfonyl chlo- $_{40}$ ride (32 μ L, 0.304 mmol) was added and the reaction was allowed to proceed for 1 hour prior to removal of a precipitate and addition of saturated sodium bicarbonate (10 mL) and extraction with dichloromethane (2×10 mL). The combined organic layers were dried with MgSO₄, filtered and concen-45 trated in vacuo. The product was purified by preparative RP-HPLC and lyophilized (24 mg, 20% yield): ¹H NMR (400 MHz, DMSO) δ 10.81 (br, 1H), 10.13 (s, 1H), 8.75 (s, 1H), 8.02 (s, 1H), 7.58 (d, J=8.9, 2H), 7.25 (m, 3H), 6.83 (dd, J=16.4, 10.0, 1H), 6.15 (d, J=16.5, 1H), 6.07 (d, J=10.0, 1H), 50 3.99 (s, 3H), 3.98 (s, 3H); 13 C NMR (100 MHz, DMSO) δ 157.93, 156.16, 150.10, 149.26, 136.23, 135.75, 132.76, 127.82, 125.54, 120.00, 107.16, 103.16, 100.51, 56.55, 56.45; [M+H]⁺ calculated for C₁₈H₁₈N₄O₄S 387.1, found 387.4.

EXAMPLE 34

Gel Filtration and Kinetic Assays

Inhibitors (final concentration 23 μ M) were incubated with c-Src variants (final concentration 11.5 μ M) in kinase reaction buffer (50 mM Tris pH 8, 100 mM NaCl, 1 mM DTT, 5% glycerol, 5% DMSO) for 25 minutes at room temperature. The solutions (2.6 mL total) were then passed over PD10 desalting columns (GE Healthcare) using the kinase reaction buffer for elution. Src concentrations were calculated using the extinction coefficient for c-Src (51.140 mM^-1cm^-1)

{Seeliger, 2005 #100}. Kinase assays were performed as described in the experimental section at a final enzyme concentration of 10 nM.

Protein labeling conditions: Kinase labeling reactions were performed by incubating 30 μL quantities of c-Src variants (in 50 mM Tris pH 8, 100 mM NaCl, 1 mM DTT, 5% glycerol) with two equivalents of inhibitor in DMSO (final DMSO concentration=2.4%). The covalent labeling reaction was quenched by removing 4 μL and adding it to 31 μL of 0.1% formic acid. The sample was then analyzed by ES1-oa-TOF mass spectrometry.

EXAMPLE 35

Crystallization and Data Collection for c-Src-ES-9

The c-Src-ES variant was prepared and purified as described above, run over a 0.22 µm PVDF centrifugal filter and diluted to 1.5-3 mg/ml in 50 mM Tris (pH 8.0), 100 mM NaCl, 5% (v/v) glycerol, 1 mM DTT. Compound 9 was freshly dissolved in DMSO and added to the protein solutions 20 (1.5-3 equivalents). After 1.5 hours of incubation at room temperature, the reaction mixtures were spun at 10,000 rpm and the supernatants were collected. Hanging drop crystallization conditions were set up by mixing 1:1 protein and precipitation solutions (100 mM MES (pH 6.5), 50 mM NaOAc, 4-8% PEG 4000). After 24-48 hours at room temperature, thin plate-like crystals were observed. Crystals were cryoprotected in the crystallization solution supplemented with 25% glycerol and stored in liquid nitrogen prior to obtaining diffraction data at beamline 8.2.2 (wavelength of 1.0088 nm, nitrogen gas stream at 100 K) at the Berkeley Lab Advanced Light Source. Data was processed with HKL2000 (HKL Research, Inc.) and Phenix software {Adams, #108}.

Crystal structure of c-Src-ES1 with 9—In order to elucidate the binding mode for a kinase with a cysteine gatekeeper and an irreversible inhibitor, an X-ray crystal structure of the 35 catalytic domain of c-Src-ES1 (residues 251-533) bound to 9 was solved (FIG. 2). Co-crystallization through incubation of c-Src-ES1 with 9 was performed using hanging-drop vapor diffusion. The complex was solved by molecular replacement and, contained two molecules in the crystallographic asym- 40 metric unit of the P1 space group. The structure was refined to 2.2 Å and exhibited electron density for 9 covalently bound to Cys338. Poor electron density was observed near the N-terminus (residues 251-256) and in flexible regions of the kinase such as the glycine-rich loop (residues 275-278) and the activation segment (residues 407-424). However, the DFG motif at the beginning of the activation segment (residues 404-406) was clearly resolved and was in the conformation associated with an active kinase (DFG-in).

The binding mode of 9 (a vinylsulfonamide functionalized compound) with c-Src-ES1 is related to Type I½ kinase inhibition. Like Type I inhibitors, Type I½ inhibitors bind the active conformation of the kinase (DFG-in) and engage in a series of hydrogen bonds in the hinge region. Type I½ are similar to Type II inhibitors in that they occupy the pocket situated behind the gatekeeper and hydrogen bond to the 55 carboxylate of the conserved glutamate on the αC-helix and backbone amide of the DFG aspartate (FIG. 2C). The hydrogen bonds afforded by the tetrahedral arrangement of the sulfone may contribute to the increased potency of 9 relative to 7, which contains an acrylamide.

EXAMPLE 36

Kinome-Wide Profiling of Inhibitors

The percent inhibition results in FIG. were generated with biochemical enzymatic kinase assays using

114

SelectScreen® Kinase Profiling Service (Life Technologies Corporation, Madison, Wis.). Compounds were assayed at 1 μM at an ATP concentration equal to the ATP Km,app for the assay following the detailed procedures described in the SelectScreen® Customer Protocol and Assay Conditions documents located at www.invitrogen.com/kinaseprofiling.

In order to identify potential off-targets, a panel of the electrophilic inhibitors that showed inhibition of c-Src-ES1 against 307 kinases was screened (Table 5). Compounds that were profiled include, but are not limited to, 3, 4, 9, 13, and 20. Excluding 3, all of the compounds had relatively few off-target effects. The exocyclic amine mimics N6 of ATP and plays an important role in a hydrogen bonding interaction with the hinge region of kinases. Several of the kinases for which >80% inhibition was achieved with vinylsulfonamidebased inhibitors was observed are those with exposed cysteines near the active site (e.g. EGFR, HER4, BTK, BMX, TXK). The fluoromethylketone-type compound, 13, had a clean profile against kinases in the panel. The present invention provides one of the most selective chemical genetic kinase inhibitor reported to date.

EXAMPLE 37

Site Directed Mutagenesis

The T338C mutation was introduced to a pET-28 vector containing a hexahistidine-tagged Src construct using standard site directed mutagenesis methods. The protein was produced in E. coli BL21DE3 cells containing YopH phosphatase and GroEL. The cells were grown in Terrific Broth containing (kanamycin, 50 mg/mL/streptomycin, 50 mg/mL). Cells were grown to an $\mathrm{OD}_{600\mathit{nm}}$ of 1.2 at 37° C., and cooled for 1 hour with shaking at 18° C. Afterwards, the cells were induced for 16 h at 18° C. with 0.2 mM IPTG. Cells were harvested and resuspended in 50 mM Tris (pH 8.0), 500 mM NaCl, 5% glycerol, 25 mM imidazole for purification over Ni-NTA resin.

EXAMPLE 38

Expression and Purification of c-Src Variants

Hexahistidine-tagged recombinant chicken c-Src (residues 251-533) was prepared in a similar manner to that described in Seeliger MA, et al. Protein Sci. 14(12):3135-3139 with the modifications used by Blair J A, et al. (2007) Structureguided development of affinity probes for tyrosine kinases using chemical genetics. Nat Chem Biol 3(4):229-238. The hexahistidine tag was removed with AcTev protease (Invitrogen) and concentrations were determined spectrophotometrically at 280 nm using an extinction coefficient of 52,370 M⁻¹cm⁻¹. All mutations were introduced using the site-directed mutagenesis protocol of Zheng L, Baumann U, Revmond J L (2004) An efficient one-step site-directed and sitesaturation mutagenesis protocol. Nucleic Acids Res 32(14): e115. Protein aliquots were stored at -80° C. in 50 mM Tris (pH 8), 100 mM NaCl, 1 mM DTT and 5% glycerol.

EXAMPLE 39

60

In vitro Kinase Assays

In vitro kinase assays for c-Src variants were performed in 50 mM Tris (pH 8.0), 10 mM MgCl₂ and 1 mg/mL BSA. When obtaining kinetic parameters (k_{cat}, K_m) kinase and peptide substrate (IYGEFKKK) (SEQ ID NO:51) concentra-

tions were 2 nM and 500 µM, respectively, while ATP concentrations ranged from 2000-0.655 µM. Addition of nonradioactive ATP supplemented with ³²P ATP (3,000 Ci/mmol, NEN) was used to initiate kinase reactions. Time points were selected such that product formation never exceeded 10%. Reactions were quenched by spotting 3 µL quantities onto phosphocellulose sheets (P81, Whatman). Afterwards, the sheets were washed 3×5 minutes in 0.5% phosphoric acid and dried. Radioactivity was measured by phosphorimaging and 10 recorded on a Typhoon fluorescence imager (Molecular Dynamics). Data were plotted as rate (min⁻¹) versus ATP concentration and fitted to the Michaelis-Menten equation, $v=[(k_{cat})[S]]/(K_m+[S])$, using Kaleidagraph software (Synergy) to extract kinetic parameters. When obtaining IC₅₀ values for the inhibitors, 2% (v/v) DMSO was included in kinase reactions. In these cases ATP, peptide, and enzyme concentrations were 15 nM, 100 µM and 5 nM, respectively, while inhibitor concentrations ranged from 10,000-0.610 nM. In all $_{20}$ cases, a ten-minute preincubation step between the kinase and the inhibitor preceded addition of ATP and a fifteen-minute reaction. The data was fitted to a sigmoidal dose-response curve using Prism 4.0c (GraphPad Software) to obtain IC_{50} values.

EXAMPLE 40

Crystallization and Data Collection for c-Src-ES1-9

The c-Src-ES1 variant was prepared and purified as described above, run over a 0.22 µm PVDF centrifugal filter and diluted to 1.5-3 mg/ml in 50 mM Tris (pH 8.0), 100 mM NaCl, 5% (v/v) glycerol, 1 mM DTT. Compound 9 was freshly dissolved in DMSO and added to the protein solutions (1.5-3 equivalents). After 1.5 hours of incubation at room temperature, the reaction mixtures were spun at 10,000 rpm and the supernatants were collected. Hanging drop crystallization conditions were set up by mixing 1:1 protein and 40 precipitation solutions (100 mM MES (pH 6.5), 50 mM NaOAc, 4-8% PEG 4000). After 24-48 hours at room temperature, thin plate-like crystals were observed. Crystals were cryoprotected in the crystallization solution supplemented with 25% glycerol and stored in liquid nitrogen prior to obtaining diffraction data at beamline 8.2.2 (wavelength of 1.0088 nm, nitrogen gas stream at 100 K) at the Berkeley Lab Advanced Light Source. Data was processed with HKL2000 (HKL Research, Inc.) and Phenix software.

EXAMPLE 41

Immunoprecipitation and Assay of MOK

A plasmid encoding full-length mouse MOK with a FLAG-tag for expression in mammalian cells was used. Immunoprecipitation from Cos7 cells was performed using a procedure similar to Miyata Y, Akashi M, Nishida E (1999). Molecular cloning and characterization of a novel member of the MAP kinase superfamily. *Genes Cells* 4(5):299-309, with the following modification: MOK was directly immunoprecipitated on ANTI-FLAG M2 magnetic beads (Sigma-Aldrich). Kinase assays were performed directly on-bead for 60 minutes in 30 μ L quantities of 50 mM Tris-HCl, 16 mM MOPS, 150 mM NaCl, 10 mM MgCl₂, 20 mM β -glycero-

116

phosphate, 2 mM EGTA, 0.8 mM sodium orthovanadate, 0.4 mM dithiothreitol, 0.1 mM ATP (supplemented with $^{32}{\rm PATP}$ (3,000 Ci/mmol, NEN)), and 20 μg of a protein substrate (myelin basic protein) at a pH of 8. Inhibitors were used at a concentration of 1 μM (final DMSO concentration, 2%). Myelin basic protein phosphorylation was analyzed by SDS-PAGE and autoradiography. MOK levels were evaluated by Western blot using HRP conjugated ANTI-FLAG M2 antibody at a 1000:1 dilution.

EXAMPLE 42

Inhibition Assays with v-Src Transformed NIH-3T3 Cells

NIH-3T3 cell lines transformed with v-Src gatekeeper variants were prepared using a procedure similar to that in Bishop A C, et al. (1998) Design of allele-specific inhibitors to probe protein kinase signaling. Curr Biol 8(5):257-266. Cells were grown to 60-90% confluence in DMEM supplemented with fetal bovine serum (10%), penicillin 'G' (100 units/ml) and streptomycin sulfate (100 µg/ml) (PenStrep, UCSF Cell Culture Facility) prior to treatment with kinase inhibitors dissolved in DMSO (final DMSO concentration, 0.5%). Following 1 hour of incubation with inhibitors at 37° C., cells were harvested in lysis buffer (50 mM Tris (pH 7.4), 300 mM NaCl, 5 mM EDTA, 1% triton, 0.02% NaN₃, 1× complete mini protease inhibitor (Roche), 1 mM PMSF, 1×PHOS-stop (Roche), 0.02 μM microcystin, 2 mM sodium orthovanadate), normalized for concentration and analyzed by Western blot for global phosphotyrosine levels (4G10, Millipore, 1:1000). Levels of β -actin (β -actin Antibody, Cell Signaling, 1:1000) and v-Src (Src 32G6 rabbit mAb, Cell Signaling, 1:1000) were ascertained by Western blot.

EXAMPLE 43

Blockade of v-Src-ES1 Activity in Cells with Electrophilic Inhibitors

I338C (v-Src-ES1, SEQ ID NO:48), I338T (SEQ ID NO:49), I338G (v-Src-AS1, SEQ ID NO:50) and WT v-Srctransformed NIH-3T3 cell lines were generated. Unlike c-Src, v-Src is constitutively active and harbors an isoleucine gatekeeper. The I338T v-Src variant was generated for consistency with the in vitro c-Src studies. For each cell line, global levels of phosphotyrosine were analyzed (FIG. 7). Importantly, the v-Src-ES1 variant was an excellent mimic of WT v-Src, while the activity of v-Src-AS1 (the mutant used in previous chemical genetic studies) was markedly diminished as judged by whole cell phosphotyrosine levels. To determine whether the electrophilic inhibitors function in cells, the v-Src-ES1 and I338T v-Src-transformed cell lines were 55 treated with 9 and 13. Both 9 and 13 inhibited v-Src-ES1 in a dose-dependent manner, while isosteric control compounds (11 and 14) showed no activity (FIG. 4). Furthermore, neither 9 nor 13 inhibited I338T v-Src even at levels as high as $10 \,\mu\text{M}$. Collectively, these results suggest that a kinase with a cysteine gatekeeper can be selectively targeted in cells.

EXAMPLE 44

Second-site Mutations to Modulate Inhibitor Potency

The design strategy, in order to determine whether further kinase engineering could enhance potency, was to either

45

117

enhance the reactivity of the cysteine by installing nearby hydrophilic/basic residues or to slightly enlarge the area around the cysteine to allow for additional rotational freedom to facilitate optimized thiol-electrophile attack geometry. Accordingly, mutations at Val323—a residue within 4 Å of the gatekeeper (FIG. 2C) in c-Src-were introduced in combination with T338C. Of the double mutants, V323A/T338C (c-Src-ES2) and V323S/T338C (c-Src-ES3) had substantial activity, while V323D/T338C (c-Src-ES4), V323E/T338C (c-Src-ES5), and V323H/T338C (c-Src-ES6) were inactive (Table 4). Enhanced inhibitor potency was observed for both c-Src-ES2 and c-Src-ES3 when treated with 13 (Table 3). In the latter case, a 12-fold improvement was noted relative to 15 c-Src-ES1. Interestingly, the potencies of 3 and 9 were not modulated appreciably upon introduction of the additional mutations. Taken together, these results indicate that the judicious placement of a secondary mutation can be an effective means for modulating inhibitor potency for an ES allele, but that this strategy needs to be evaluated on a case-by-case basis.

EXAMPLE 45

Evaluating the Use of a Cysteine Gatekeeper Kinase

A recombinant wild type (WT) and T338C c-Src was generated. The recombinant wild type (WT) and the T338C c-Src were assayed for kinase activity, see Table 8. The k_{cat} value for T338C c-Src (183 min⁻¹) closely approximated that of WT (159 min⁻¹) and was ~3.5-fold greater than that of c-Src-AS1 (51.9 min⁻¹). The T338C c-Src variant also recapitulated WT in affinity for ATP as determined by the Michaelis constant (K_m) values (21.9 μ M vs. 31.9 μ M), while c-Src-AS1 (87.5 μ M) exhibited ~4-fold loss relative to T338C c-Src. These effects translate to a 14-fold improvement in catalytic efficiency (k_{cat}/K_m) for T338C c-Src in relation to c-Src-AS1.

TABLE 8

Kinetic parameters for c-Src variants. Values were determined by fitting data to the Michaelis-Menten equation. Standard errors associated with the fits are reported.

c-Src Variant	$\begin{array}{c} \mathbf{k}_{cat} \\ (\mathrm{min}^{-1}) \end{array}$	$\operatorname*{K}_{m\text{, }ATP} (\mu \mathbf{M})$	$\begin{array}{c} \mathbf{k}_{cat}/\mathbf{K}_{m} \\ (\mathrm{min}^{-1} \ \mu \mathbf{M}^{-1}) \end{array}$	50
WT	159 ± 4	31.9 ± 3.0	4.99 ± 0.40	-
T338C	183 ± 3	21.9 ± 1.7	8.34 ± 0.57	
AS1	51.9 ± 1.9	87.5 ± 12.6	0.592 ± 0.072	

Kinetic measurements reveal that in the case of c-Src, the ES1 variant is a mimic of wild type activity. Furthermore, the ES1 variant of v-Src is also a mimic of the wild type, which contains a particularly hydrophobic (isoleucine) gatekeeper. See Tables 9a-9c following. Results on the selectivity of compound 19 in the Invitrogen SelectScreen® Kinase Assay are provided in Tables 9a-9c following. Table 9a is the LanthaScreenTM heat map., Table 9b is the Adapta® heat map, and Table 9c is the Z'-lyteTM heat map. Legend for Tables 9a-9c: <40% inhibition (gray); 40%-80% inhibition (white); 80% inhibition (diagonal stripes). Selected results in the

118

assays are further provided in FIG. 11. In the table below, Cmpd 3-vs-Q refers to compound 19.

TABLE 9a

		Cmpd 3-vs-Q
Kinase tested		1000 nM
ACVR1 (ALK2)	Binding	4
ACVR2B	Binding	19
BMPR1A (ALK3)	Binding	10
CAMKK1 (CAMKKA)	Binding	- 5
CAMKK2 (CaMKK beta)	Binding	6
CDK8/cyclin C	Binding	4
CDK9/cyclin K	Binding	
CLK4	Binding	24
DDR1	Binding	0
DDR2	Binding	5
DMPK	Binding	10
ЕРНА3	Binding	
ЕРНА7	Binding	-2
KIT V654A	Binding	6
LIMK1	Binding	1
LIMK2	Binding	6
MAP2K1 (MEK1) S218D	Binding	20
S222D	January	
MAP2K3 (MEK3)	Binding	6
MAP2K6 (MKK6) S207E	Binding	•
T211E	Dinaing	
MAP3K10 (MLK2)	Binding	6
MAP3K11 (MLK3)	Binding	1
MAP3K14 (NIK)	Binding	12
MAP3K2 (MEKK2)	Binding	,
MAP3K3 (MEKK3)	Binding	9
MAP3K5 (ASK1)	Binding	3
MAP3K7/MAP3K7IP1	Binding	3
(TAK1-TAB1)		
MKNK2 (MNK2)	Binding	36
MLCK (MLCK2)	Binding	36
MYLK (MLCK)	Binding	3
NLK	Binding	•
RIPK2	Binding	52
SLK	Binding	7
STK16 (PKL12)	Binding	-5
STK17A (DRAK1)	Binding	21
STK33	Binding	-7
TAOK3 (JIK)	Binding	-3
TEC	Binding	3
TGFBR1 (ALK5)	Binding	10
TNK2 (ACK)	Binding	10
TTK	Binding	16
WEE1	Binding	14
WNK2	Binding	10

TABLE 9b

120
TABLE 9c-continued

Kinase			Cmpd 3-vs-Q 1000 nM
	<u> </u>	100	
CAMK1 (CaMK1)	Activity	100	-21
CDK7/cyclin H/MNAT1	Activity	Km app	0
CDK9/cyclin T1	Activity	Km app	-24
CHUK (IKK alpha)	Activity	Km app	3
DAPK1	Activity	Km app	6
GSG2 (Haspin)	Activity	Km app	-8
IRAK1	Activity	Km app	6
LRRK2	Activity	Km app	75
LRRK2 G2019S	Activity	Km app	
NUAK1 (ARK5)	Activity	Km app	24
PI4KA (PI4K alpha)	Activity	10	7
PI4KB (PI4K beta)	Activity	Km app	14
PIK3C2A (PI3K-C2	Activity	Km app	-1
alpha)			
PIK3C2B (PI3K-C2 beta)	Activity	100	65
PIK3C3 (hVPS34)	Activity	Km app	1
PIK3CA/PIK3R1 (p110	Activity	Km app	13
alpha/p85 alpha)			
PIK3CD/PIK3R1 (p110	Activity	Km app	10
delta/p85 alpha)			
PIK3CG (p110 gamma)	Activity	Km app	27
SPHK1	Activity	Km app	3
SPHK2	Activity	100	-11
			100000000000000000000000000000000000000

AURKB (Aurora B)	Activity	Km app	26
AURKC (Aurora C)	Activity	Km app	1
AXL	Activity	Km app	19
BLK	Activity	Km app	24
BMX	Activity	Km app	24
BRAF	Activity	100	4
BRAF V599E	Activity	100	13
BRSK1 (SAD1)	Activity	Km app	35
BTK	Activity	Km app	59
CAMK1D (CaMKI delta)	Activity	Km app	15
CAMK2A (CaMKII alpha)	Activity	Km app	- 4
CAMK2B (CaMKII beta)	Activity	Km app	- 5
CAMK2D (CaMKII delta)	Activity	Km app	10
CAMK4 (CaMKIV)	Activity	Km app	10
CDC42 BPA (MRCKA)	Activity	Km app	23
CDC42 BPB (MRCKB)	Activity	Km app	-4
CDK1/cyclin B	Activity	Km app	3
CDK2/cyclin A	Activity	Km app	4
CDK5/p25	Activity	Km app	10

CDK5/p35	Activity	Km app	- 5
CHEK1 (CHK1)	Activity	Km app	-6
CHEK2 (CHK2)	Activity	Km app	53
CLK1	Activity	Km app	11
CLK2	Activity	Km app	-3

TABLE 9c

Kinase			Cmpd 3-vs-Q 1000 nM
			555555555555555555555555555555555555555
ABL1	Activity	Km app	4
ABL1 E255K	Activity	Km app	7
ABL1 G250E	Activity	Km app	2
ABL1 T315I	Activity	Km app	11
ABL1 Y253F	Activity	Km app	12
ABL2 (Arg)	Activity	Km app	10
ACVR1B (ALK4)	Activity	Кт арр	-1
ADRBK1 (GRK2)	Activity	Кт арр	13
ADRBK2 (GRK3)	Activity	Km app	1
AKT1 (PKB alpha)	Activity	Km app	- 0
AKT2 (PKB beta)	Activity	Кт арр	4
AKT3 (PKB gamma)	Activity	Km app	4
ALK	Activity	Km app	- 3
AMPK A1/B1/G1	Activity	Km app	18
AMPK A2/B1/G1	Activity	Кт арр	15
AURKA (Aurora A)	Activity	Km app	12

CLK3	Activity	Km app	- 6
CSF1R (FMS)	Activity	Km app	3
CSK	Activity	Km app	12
CSNK1A1 (CK1 alpha 1)	Activity	Km app	0
CSNK1D (CK1 delta)	Activity	Km app	- 5
CSNK1E (CK1 epsilon)	Activity	Km app	6
CSNK1G1 (CK1 gamma	Activity	Km app	12
1)			
CSNK1G2 (CK1 gamma	Activity	Km app	31
2)			
CSNK1G3 (CK1 gamma	Activity	Km app	31
3)			
CSNK2A1 (CK2 alpha 1)	Activity	Km app	13
CSNK2A2 (CK2 alpha 2)	Activity	Km app	-1
DAPK3 (ZIPK)	Activity	Km app	0
DCAMKL2 (DCK2)	Activity	Km app	•
DNA-PK	Activity	Km app	25
DYRK1A	Activity	Km app	-2

122 TABLE 9c-continued

Γ	DYRK1B	Activity	Km app	3		INSRR (IRR)	Activity	Km app	11
f	DYRK3	Activity	Km app	5	5	IRAK4	Activity	Km app	3
	DYRK4	Activity	Km app	3		ITK	Activity	Km app	-3
Ī	EEF2K	Activity	Km app	5		JAK1	Activity	Km app	14
Ī	EGFR (ErbB1)	Activity	Km app			JAK2	Activity	Km app	0
Ī	EGFR (ErbB1) L858R	Activity	Km app	69	10	JAK2 JH1 JH2	Activity	Km app	. 5
	EGFR (ErbB1) L861Q	Activity	Km app	76	10	JAK2 JH1 JH2 V617F	Activity	Km app	-4
Ī	EGFR (ErbB1) T790M	Activity	Km app	27		JAK3	Activity	Km app	37
	EGFR (ErbB1) T790M	Activity	Km app	41		KDR (VEGFR2)	Activity	Km app	6
	L858R				1.5	KIT	Activity	Km app	7
Γ	EPHA1	Activity	Km app	19	15	KIT T670I	Activity	Km app	5
⊢	EPHA2	Activity	Km app	4		LCK	Activity	Km app	0
⊢	EPHA4	Activity	Km app	8		LTK (TYK1)	Activity	Km app	4
⊢	EPHA5	Activity	Km app	7		LYN A	Activity	Km app	21
⊢	EPHA8	Activity	Km app	111	20				200000000000000000000000000000000000000
⊢	EPHB1	Activity	Km app	8					
⊢	EPHB2	Activity	Km app	15					
⊢	EPHB3	Activity	Km app	8					
⊢	EPHB4	Activity	Km app		25				
H	ERBB2 (HER2)	Activity	Km app	66					
⊢	ERBB4 (HER4)	Activity	Km app	80		LYN B	Activity	Km app	25
⊢	FER	Activity	Km app	6		MAP2K1 (MEK1)	Activity	100	3
H	FES (FPS)	Activity	Km app	16	30	MAP2K2 (MEK2)	Activity	100	13
-	FGFR1	Activity	Km app	8		MAP2K6 (MKK6)	Activity	100	17
		I		100000000000000000000000000000000000000		MAP3K8 (COT)	Activity	100	-1
-	FGFR2	Activity	Km app	14		MAP3K9 (MLK1)	Activity	Km app	3
L	FGFR3	Activity	Km app	111	35	MAP4K2 (GCK)	Activity	Km app	-13
	FGFR3 K650E	Activity	Km app	18		MAP4K4 (HGK)	Activity	Km app	23
L	FGFR4	Activity	Km app	14		MAP4K5 (KHS1)	Activity	Km app	23
	FGR	Activity	Km app	33		MAPK1 (ERK2)	Activity	Km app	2
	FLT1 (VEGFR1)	Activity	Km app	2	40	MAPK10 (JNK3)	Activity	100	2
	FLT3	Activity	Km app	32		MAPK11 (p38 beta)	Activity	Km app	14
	FLT3 D835Y	Activity	Km app			MAPK12 (p38 gamma)	Activity	Km app	10
	FLT4 (VEGFR3)	Activity	Km app	34		MAPK13 (p38 delta)	Activity	Km app	5
	FRAP1 (mTOR)	Activity	Km app	.7	45				
	FRK (PTK5)	Activity	Km app	11					
	FYN	Activity	Km app	3					
	GRK4	Activity	Km app	15					
	GRK5	Activity	Km app	49	50				
	GRK6	Activity	Km app	27	30	MAPK14 (p38 alpha)	Activity	100	24
í	GRK7	Activity	Km app	-2		MAPK14 (p38 alpha)	Activity	Km app	11
	GSK3A (GSK3 alpha)	Activity	Km app	-2		Direct			
	GSK3B (GSK3 beta)	Activity	Km app	-4		MAPK3 (ERK1)	Activity	Km app	10
	HCK	Activity	Km app	13	55	MAPK8 (JNK1)	Activity	100	19
	HIPK1 (Myak)	Activity	Km app	3		MAPK9 (JNK2)	Activity	100	8
	HIPK2	Activity	Km app	4		MAPKAPK2	Activity	Km app	6
	HIPK3 (YAK1)	Activity	Km app	3		MAPKAPK3	Activity	Km app	5
	HIPK4	Activity	Km app	17	60	MAPKAPK5 (PRAK)	Activity	Km app	7
	GF1R	Activity	Km app			MARK1 (MARK)	Activity	Km app	-1
	KBKB (IKK beta)	Activity	Km app	13		MARK2	Activity	Km app	2
	KBKE (IKK epsilon)	Activity	Km app	10		MARK3	Activity	Km app	5
	NSR	Activity	Km app	10 0	65	MARK4	Activity	Km app	
,			ու գիր						

123
TABLE 9c-continued

124
TABLE 9c-continued

MATK (HYL)	Activity	Km app	5	
MELK	Activity	Km app	20	5
MERTK (cMER)	Activity	Km app	12	
MET (cMet)	Activity	Km app	*	
MET M1250T	Activity	Km app	8	
MINK1	Activity	Km app	17	10
MKNK1 (MNK1)	Activity	Km app	40	
MST1R (RON)	Activity	Km app	11	
MST4	Activity	Km app	15	
MUSK	Activity	Km app	14	15
MYLK2 (skMLCK)	Activity	Km app	13	
NEK1	Activity	Km app	<u></u>	
NEK2	Activity	Km app	4	
NEK4	Activity	Km app	22	20
NEK6	Activity	Km app	6	

PLK3	Activity	Km app	-2
PRKACA (PKA)	Activity	Km app	- 0
PRKCA (PKC alpha)	Activity	Km app	14
PRKCB1 (PKC beta I)	Activity	Km app	10
PRKCB2 (PKC beta II)	Activity	Km app	5
PRKCD (PKC delta)	Activity	Km app	15
PRKCE (PKC epsilon)	Activity	Km app	17
PRKCG (PKC gamma)	Activity	Km app	14
PRKCH (PKC eta)	Activity	Km app	15
PRKCI (PKC iota)	Activity	Km app	10
PRKCN (PKD3)	Activity	Km app	10
PRKCQ (PKC theta)	Activity	Km app	13
PRKCZ (PKC zeta)	Activity	Km app	8
PRKD1 (PKC mu)	Activity	Km app	12

NEK7	Activity	Km app	6
NEK9	Activity	Km app	10
NTRK1 (TRKA)	Activity	Km app	18
NTRK2 (TRKB)	Activity	Km app	8
NTRK3 (TRKC)	Activity	Km app	3
PAK1	Activity	Km app	14
PAK2 (PAK65)	Activity	Km app	12
PAK3	Activity	Km app	- 3
PAK4	Activity	Km app	-4
PAK6	Activity	Km app	- 8
PAK7 (KIAA1264)	Activity	Km app	9
PASK	Activity	Km app	8
PDGFRA (PDGFR	Activity	Km app	18
alpha)			

PRKD2 (PKD2)	Activity	Km app	12
PRKG1	Activity	Km app	2
PRKG2 (PKG2)	Activity	Km app	-1
PRKX	Activity	Km app	3
PTK2 (FAK)	Activity	Km app	9
PTK2B (FAK2)	Activity	Km app	4
PTK6 (Brk)	Activity	Km app	9
RAF1 (cRAF) Y340D	Activity	100	21
Y341D			
RET	Activity	Km app	19
RET V804L	Activity	Km app	12
RET Y791F	Activity	Km app	25
ROCK1	Activity	Km app	+3

PDGFRA D842V	Activity	Km app	22
PDGFRA T674I	Activity	Km app	25
PDGFRA V561D	Activity	Km app	45
PDGFRB (PDGFR beta)	Activity	Km app	- 8
PDK1	Activity	100	16
PDK1 Direct	Activity	Km app	0
PHKG1	Activity	Km app	10
PHKG2	Activity	Km app	- 4
PIM1	Activity	Km app	12
PIM2	Activity	Km app	- 0
PKN1 (PRK1)	Activity	Km app	19
PLK1	Activity	Km app	-1
PLK2	Activity	Km app	10

ROCK2	Activity	Km app	13
ROS1	Activity	Km app	40
RPS6KA1 (RSK1)	Activity	Km app	- 6
RPS6KA2 (RSK3)	Activity	Km app	26
RPS6KA3 (RSK2)	Activity	Km app	g
RPS6KA4 (MSK2)	Activity	Km app	- 6
RPS6KA5 (MSK1)	Activity	Km app	0
RPS6KA6 (RSK4)	Activity	Km app	49
RPS6KB1 (p70S6K)	Activity	Km app	1 0
SGK (SGK1)	Activity	Km app	- 6
SGK2	Activity	Km app	- 8
SGKL (SGK3)	Activity	Km app	4
SNF1LK2	Activity	Km app	4
SRC	Activity	Km app	4

125 TABLE 9c-continued

TABLE 9c-continued

SRC N1	Activity	Km app	15
SRMS (Srm)	Activity	Km app	71
SRPK1	Activity	Km app	2
SRPK2	Activity	Km app	10
STK22B (TSSK2)	Activity	Km app	2
STK22D (TSSK1)	Activity	Km app	13
STK23 (MSSK1)	Activity	Km app	14
STK24 (MST3)	Activity	Km app	11
STK25 (YSK1)	Activity	Km app	- 5
STK3 (MST2)	Activity	Km app	-9
STK4 (MST1)	Activity	Km app	2
SYK	Activity	Km app	-2
TAOK2 (TAO1)	Activity	Km app	2
TBK1	Activity	Km app	-2

TEK (Tie2)	Activity	Km app	-7
TXK	Activity	Km app	78
TYK2	Activity	Km app	-4
TYRO3 (RSE)	Activity	Km app	22
YES1	Activity	Km app	30
ZAP70	Activity	Km app	10

126

Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, one of skill in the art will appre-15 ciate that certain changes and modifications may be practiced within the scope of the appended claims. In addition, each reference provided herein is incorporated by reference in its entirety to the same extent as if each reference was individually incorporated by reference. Where a conflict exists between the instant application and a reference provided herein, the instant application shall dominate.

SEOUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 80
```

<210> SEQ ID NO 1

<211> LENGTH: 918

<212> TYPE: DNA

<213> ORGANISM: Artificial sequence

<220> FEATURE:

<223> OTHER INFORMATION: synthetic DNA construct for T338C c-src (251-533)

<400> SEQUENCE: 1

catcatcatc atcatcacga ttacgatatc ccaacgaccg aaaaccttta cttccagggc 60 catatgcaga cccagggact cgccaaggac gcgtgggaaa tcccccggga gtcgctgcgg 120 ctggaggtga agctggggca gggctgcttt ggagaggtct ggatggggac ctggaacggc 180 accaccagag tggccataaa gactctgaag cccggcacca tgtccccgga ggccttcctg caqqaaqccc aaqtgatqaa qaaqctccqq catqaqaaqc tqqttcaqct qtacqcaqtq 300 gtgtcggaag agcccatcta catcgtctgt gagtacatga gcaaggggag cctcctggat 360 ttcctgaagg gagagatggg caagtacctg cggctgccac agctcgtcga tatggctgct 420 cagattgcat ccggcatggc ctatgtggag aggatgaact acgtgcaccg agacctgcgg 480 gcggccaaca tcctggtggg ggagaacctg gtgtgcaagg tggctgactt tgggctggca 540 cgcctcatcg aggacaacga gtacacagca cggcaaggtg ccaagttccc catcaagtgg 600 acagececeg aggeagecet ctatggeegg tteaceatea agteggatgt etggteette 660 ggcatcctgc tgactgagct gaccaccaag ggccgggtgc catacccagg gatggtcaac 720 780 agggaggtgc tggaccaggt ggagaggggc taccgcatgc cctgcccgcc cgagtgcccc gagtcgctgc atgacctcat gtgccagtgc tggcggaagg accctgagga gcggcccact 840 900 tttgagtacc tgcaggcctt cctggaggac tacttcacct cgacagagcc ccagtaccag

127

-continued

cctggagaga acctatag

```
<210> SEQ ID NO 2
 <211> LENGTH: 305
 <212> TYPE: PRT
 <213> ORGANISM: Artificial sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: synthetic T338C c-src (251-533) protein
 <400> SEQUENCE: 2
His His His His His Asp Tyr Asp Ile Pro Thr Thr Glu Asn Leu
 Tyr Phe Gln Gly His Met Gln Thr Gln Gly Leu Ala Lys Asp Ala Trp
 Glu Ile Pro Arg Glu Ser Leu Arg Leu Glu Val Lys Leu Gly Gln Gly
Cys Phe Gly Glu Val Trp Met Gly Thr Trp Asn Gly Thr Thr Arg Val 50 \, 60
Ala Ile Lys Thr Leu Lys Pro Gly Thr Met Ser Pro Glu Ala Phe Leu 65 70 75 80
 Gln Glu Ala Gln Val Met Lys Lys Leu Arg His Glu Lys Leu Val Gln
 Leu Tyr Ala Val Val Ser Glu Glu Pro Ile Tyr Ile Val Cys Glu Tyr
                                                                                                                  105
Met Ser Lys Gly Ser Leu Leu Asp Phe Leu Lys Gly Glu Met Gly Lys
                                                                                                   120
 Tyr Leu Arg Leu Pro Gln Leu Val Asp Met Ala Ala Gln Ile Ala Ser
 Gly Met Ala Tyr Val Glu Arg Met Asn Tyr Val His Arg Asp Leu Arg
                                                                        150
                                                                                                                                                   155
 Ala Ala Asn Ile Leu Val Gly Glu Asn Leu Val Cys Lys Val Ala Asp
 Phe Gly Leu Ala Arg Leu Ile Glu Asp Asn Glu Tyr Thr Ala Arg Gln
 Gly Ala Lys Phe Pro Ile Lys Trp Thr Ala Pro Glu Ala Ala Leu Tyr
 Gly Arg Phe Thr Ile Lys Ser Asp Val Trp Ser Phe Gly Ile Leu Leu
                                                                                  215
 Thr Glu Leu Thr Thr Lys Gly Arg Val Pro Tyr Pro Gly Met Val Asn
Arg Glu Val Leu Asp Gln Val Glu Arg Gly Tyr Arg Met Pro Cys Pro 245 \hspace{1cm} 250 \hspace{1cm} 255 \hspace{1cm}
 Pro Glu Cys Pro Glu Ser Leu His Asp Leu Met Cys Gln Cys Trp Arg
 Lys Asp Pro Glu Glu Arg Pro Thr Phe Glu Tyr Leu Gln Ala Phe Leu
Glu Asp Tyr Phe Thr Ser Thr Glu Pro Gl<br/>n Tyr Gl<br/>n Pro Gly Glu Asn % \left( 1\right) =\left( 1\right) +\left( 1\right) +
                                                                                       295
Leu
3.05
<210> SEQ ID NO 3
 <211> LENGTH: 533
<212> TYPE: PRT
 <213> ORGANISM: Gallus gallus
 <220> FEATURE:
<223 > OTHER INFORMATION: proto-oncogene c-Src
```

< 400)> SI	EQUEI	NCE:	3											
Met 1	Gly	Ser	Ser	Lys	Ser	ГÀв	Pro	Lys	Asp 10	Pro	Ser	Gln	Arg	Arg 15	Arg
Ser	Leu	Glu	Pro 20	Pro	Asp	Ser	Thr	His 25	His	Gly	Gly	Phe	Pro 30	Ala	Ser
Gln	Thr	Pro 35	Asn	Lys	Thr	Ala	Ala 40	Pro	Asp	Thr	His	Arg 45	Thr	Pro	Ser
Arg	Ser 50	Phe	Gly	Thr	Val	Ala 55	Thr	Glu	Pro	Lys	Leu 60	Phe	Gly	Gly	Phe
Asn 65	Thr	Ser	Asp	Thr	Val 70	Thr	Ser	Pro	Gln	Arg 75	Ala	Gly	Ala	Leu	Ala 80
Gly	Gly	Val	Thr	Thr 85	Phe	Val	Ala	Leu	Tyr 90	Asp	Tyr	Glu	Ser	Arg 95	Thr
Glu	Thr	Asp	Leu 100	Ser	Phe	Lys	Lys	Gly 105	Glu	Arg	Leu	Gln	Ile 110	Val	Asn
Asn	Thr	Glu 115	Gly	Asp	Trp	Trp	Leu 120	Ala	His	Ser	Leu	Thr 125	Thr	Gly	Gln
Thr	Gly 130	Tyr	Ile	Pro	Ser	Asn 135	Tyr	Val	Ala	Pro	Ser 140	Asp	Ser	Ile	Gln
Ala 145	Glu	Glu	Trp	Tyr	Phe 150	Gly	Lys	Ile	Thr	Arg 155	Arg	Glu	Ser	Glu	Arg 160
Leu	Leu	Leu	Asn	Pro 165	Glu	Asn	Pro	Arg	Gly 170	Thr	Phe	Leu	Val	Arg 175	Glu
Ser	Glu	Thr	Thr 180	ГÀв	Gly	Ala	Tyr	Cys 185	Leu	Ser	Val	Ser	Asp 190	Phe	Asp
Asn	Ala	Lys 195	Gly	Leu	Asn	Val	Lys 200	His	Tyr	Lys	Ile	Arg 205	Lys	Leu	Asp
Ser	Gly 210	Gly	Phe	Tyr	Ile	Thr 215	Ser	Arg	Thr	Gln	Phe 220	Ser	Ser	Leu	Gln
Gln 225	Leu	Val	Ala	Tyr	Tyr 230	Ser	Lys	His	Ala	Asp 235	Gly	Leu	Cys	His	Arg 240
Leu	Thr	Asn	Val	Суs 245	Pro	Thr	Ser	Lys	Pro 250	Gln	Thr	Gln	Gly	Leu 255	Ala
ГÀа	Asp	Ala	Trp 260	Glu	Ile	Pro	Arg	Glu 265	Ser	Leu	Arg	Leu	Glu 270	Val	Lys
Leu	Gly	Gln 275	Gly	CAa	Phe	Gly	Glu 280	Val	Trp	Met	Gly	Thr 285	Trp	Asn	Gly
Thr	Thr 290	Arg	Val	Ala	Ile	Lys 295	Thr	Leu	Lys	Pro	Gly 300	Thr	Met	Ser	Pro
Glu 305	Ala	Phe	Leu	Gln	Glu 310	Ala	Gln	Val	Met	Lys 315	Lys	Leu	Arg	His	Glu 320
Lys	Leu	Val	Gln	Leu 325	Tyr	Ala	Val	Val	Ser 330	Glu	Glu	Pro	Ile	Tyr 335	Ile
Val	Thr	Glu	Tyr 340	Met	Ser	Lys	Gly	Ser 345	Leu	Leu	Asp	Phe	Leu 350	Lys	Gly
Glu	Met	Gly 355	Lys	Tyr	Leu	Arg	Leu 360	Pro	Gln	Leu	Val	Asp 365	Met	Ala	Ala
Gln	Ile 370	Ala	Ser	Gly	Met	Ala 375	Tyr	Val	Glu	Arg	Met 380	Asn	Tyr	Val	His
Arg 385	Asp	Leu	Arg	Ala	Ala 390	Asn	Ile	Leu	Val	Gly 395	Glu	Asn	Leu	Val	Cys 400
Lys	Val	Ala	Asp	Phe	Gly	Leu	Ala	Arg	Leu	Ile	Glu	Asp	Asn	Glu	Tyr

				405					410					415		
Thr	Ala	Arg	Gln 420	Gly	Ala	Lys	Phe	Pro 425	Ile	Lys	Trp	Thr	Ala 430	Pro	Glu	
Ala	Ala	Leu 435	Tyr	Gly	Arg	Phe	Thr 440	Ile	ГÀа	Ser	Asp	Val 445	Trp	Ser	Phe	
Gly	Ile 450	Leu	Leu	Thr	Glu	Leu 455	Thr	Thr	ГЛа	Gly	Arg 460	Val	Pro	Tyr	Pro	
Gly 465	Met	Val	Asn	Arg	Glu 470	Val	Leu	Asp	Gln	Val 475	Glu	Arg	Gly	Tyr	Arg 480	
Met	Pro	Сув	Pro	Pro 485	Glu	CAa	Pro	Glu	Ser 490	Leu	His	Asp	Leu	Met 495	Cys	
Gln	Cys	Trp	Arg 500	Lys	Asp	Pro	Glu	Glu 505	Arg	Pro	Thr	Phe	Glu 510	Tyr	Leu	
Gln	Ala	Phe 515	Leu	Glu	Asp	Tyr	Phe 520	Thr	Ser	Thr	Glu	Pro 525	Gln	Tyr	Gln	
Pro	Gly 530	Glu	Asn	Leu												
<213 <213 <213 <220		ENGTI (PE : RGAN: EATUI	H: 28 PRT ISM: RE: INFO	33 Art:			-		Gallı	ra da	allus	s pro	oto-«	onco	gene	c-Src
< 400)> SI	EQUEI	ICE :	4												
Gln 1	Thr	Gln	Gly	Leu 5	Ala	ГÀз	Asp	Ala	Trp 10	Glu	Ile	Pro	Arg	Glu 15	Ser	
Leu	Arg	Leu	Glu 20	Val	Lys	Leu	Gly	Gln 25	Gly	Cys	Phe	Gly	Glu 30	Val	Trp	
Met	Gly	Thr 35	Trp	Asn	Gly	Thr	Thr 40	Arg	Val	Ala	Ile	Lуз 45	Thr	Leu	Lys	
Pro	Gly 50	Thr	Met	Ser	Pro	Glu 55	Ala	Phe	Leu	Gln	Glu 60	Ala	Gln	Val	Met	
Lуз 65	Lys	Leu	Arg	His	Glu 70	Lys	Leu	Val	Gln	Leu 75	Tyr	Ala	Val	Val	Ser 80	
Glu	Glu	Pro	Ile	Tyr 85	Ile	Val	Thr	Glu	Tyr 90	Met	Ser	Lys	Gly	Ser 95	Leu	
Leu	Asp	Phe	Leu 100	Lys	Gly	Glu	Met	Gly 105	Lys	Tyr	Leu	Arg	Leu 110	Pro	Gln	
Leu	Val	Asp 115	Met	Ala	Ala	Gln	Ile 120	Ala	Ser	Gly	Met	Ala 125	Tyr	Val	Glu	
Arg	Met 130	Asn	Tyr	Val	His	Arg 135	Asp	Leu	Arg	Ala	Ala 140	Asn	Ile	Leu	Val	
Gly 145	Glu	Asn	Leu	Val	Cys 150	Lys	Val	Ala	Asp	Phe 155	Gly	Leu	Ala	Arg	Leu 160	
Ile	Glu	Asp	Asn	Glu 165	Tyr	Thr	Ala	Arg	Gln 170	Gly	Ala	Lys	Phe	Pro 175	Ile	
ГÀа	Trp	Thr	Ala 180	Pro	Glu	Ala	Ala	Leu 185	Tyr	Gly	Arg	Phe	Thr	Ile	Lys	
Ser	Asp	Val 195	Trp	Ser	Phe	Gly	Ile 200	Leu	Leu	Thr	Glu	Leu 205	Thr	Thr	Lys	
Gly	Arg 210	Val	Pro	Tyr	Pro	Gly 215	Met	Val	Asn	Arg	Glu 220	Val	Leu	Asp	Gln	

-continued

Val Glu Arg Gly Tyr Arg Met Pro Cys Pro Pro Glu Cys Pro Glu Ser 230 235 Leu His Asp Leu Met Cys Gln Cys Trp Arg Lys Asp Pro Glu Glu Arg Pro Thr Phe Glu Tyr Leu Gln Ala Phe Leu Glu Asp Tyr Phe Thr Ser 265 Thr Glu Pro Gln Tyr Gln Pro Gly Glu Asn Leu <210> SEQ ID NO 5 <211> LENGTH: 286 <212> TYPE: PRT <213 > ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic Gallus gallus proto-oncogene c-Src (251-533) with GHM at N-terminal <400> SEQUENCE: 5 Gly His Met Gln Thr Gln Gly Leu Ala Lys Asp Ala Trp Glu Ile Pro 10 Arg Glu Ser Leu Arg Leu Glu Val Lys Leu Gly Gln Gly Cys Phe Gly Glu Val Trp Met Gly Thr Trp Asn Gly Thr Thr Arg Val Ala Ile Lys Thr Leu Lys Pro Gly Thr Met Ser Pro Glu Ala Phe Leu Gln Glu Ala Gln Val Met Lys Lys Leu Arg His Glu Lys Leu Val Gln Leu Tyr Ala Val Val Ser Glu Glu Pro Ile Tyr Ile Val Thr Glu Tyr Met Ser Lys 90 Gly Ser Leu Leu Asp Phe Leu Lys Gly Glu Met Gly Lys Tyr Leu Arg 105 Leu Pro Gln Leu Val Asp Met Ala Ala Gln Ile Ala Ser Gly Met Ala Tyr Val Glu Arg Met Asn Tyr Val His Arg Asp Leu Arg Ala Ala Asn 135 Ile Leu Val Gly Glu Asn Leu Val Cys Lys Val Ala Asp Phe Gly Leu Ala Arg Leu Ile Glu Asp Asn Glu Tyr Thr Ala Arg Gln Gly Ala Lys Phe Pro Ile Lys Trp Thr Ala Pro Glu Ala Ala Leu Tyr Gly Arg Phe Thr Ile Lys Ser Asp Val Trp Ser Phe Gly Ile Leu Leu Thr Glu Leu Thr Thr Lys Gly Arg Val Pro Tyr Pro Gly Met Val Asn Arg Glu Val 215 Leu Asp Gln Val Glu Arg Gly Tyr Arg Met Pro Cys Pro Pro Glu Cys Pro Glu Ser Leu His Asp Leu Met Cys Gln Cys Trp Arg Lys Asp Pro 250 Glu Glu Arg Pro Thr Phe Glu Tyr Leu Gln Ala Phe Leu Glu Asp Tyr 265 Phe Thr Ser Thr Glu Pro Gln Tyr Gln Pro Gly Glu Asn Leu 280

```
<211> LENGTH: 283
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthetic Gallus gallus proto-oncogene
     [T338X]c-Src (251-533)
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: (88)..(88)
<223> OTHER INFORMATION: Xaa = any naturally occurring amino acid
<400> SEQUENCE: 6
Gln Thr Gln Gly Leu Ala Lys Asp Ala Trp Glu Ile Pro Arg Glu Ser
Leu Arg Leu Glu Val Lys Leu Gly Gln Gly Cys Phe Gly Glu Val Trp
Met Gly Thr Trp Asn Gly Thr Thr Arg Val Ala Ile Lys Thr Leu Lys
Pro Gly Thr Met Ser Pro Glu Ala Phe Leu Gln Glu Ala Gln Val Met
            55
Lys Lys Leu Arg His Glu Lys Leu Val Gln Leu Tyr Ala Val Val Ser
Glu Glu Pro Ile Tyr Ile Val Xaa Glu Tyr Met Ser Lys Gly Ser Leu
Leu Asp Phe Leu Lys Gly Glu Met Gly Lys Tyr Leu Arg Leu Pro Gln
                              105
Leu Val Asp Met Ala Ala Gln Ile Ala Ser Gly Met Ala Tyr Val Glu
                          120
Arg Met Asn Tyr Val His Arg Asp Leu Arg Ala Ala Asn Ile Leu Val
                       135
Gly Glu Asn Leu Val Cys Lys Val Ala Asp Phe Gly Leu Ala Arg Leu
Ile Glu Asp Asn Glu Tyr Thr Ala Arg Gln Gly Ala Lys Phe Pro Ile
                                   170
Lys Trp Thr Ala Pro Glu Ala Ala Leu Tyr Gly Arg Phe Thr Ile Lys
Ser Asp Val Trp Ser Phe Gly Ile Leu Leu Thr Glu Leu Thr Thr Lys
                           200
Gly Arg Val Pro Tyr Pro Gly Met Val Asn Arg Glu Val Leu Asp Gln
Val Glu Arg Gly Tyr Arg Met Pro Cys Pro Pro Glu Cys Pro Glu Ser
Leu His Asp Leu Met Cys Gln Cys Trp Arg Lys Asp Pro Glu Glu Arg
Pro Thr Phe Glu Tyr Leu Gln Ala Phe Leu Glu Asp Tyr Phe Thr Ser
Thr Glu Pro Gln Tyr Gln Pro Gly Glu Asn Leu
      275
<210> SEQ ID NO 7
<211> LENGTH: 286
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthetic Gallus gallus proto-oncogene
     GHM-[T338X]c-Src (251-533) (GHM at N-terminal)
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: (91)..(91)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
```

<400> SEQUENCE: 7

Gly His Met Gln Thr Gln Gly Leu Ala Lys Asp Ala Trp Glu Ile Pro Arg Glu Ser Leu Arg Leu Glu Val Lys Leu Gly Gln Gly Cys Phe Gly Glu Val Trp Met Gly Thr Trp Asn Gly Thr Thr Arg Val Ala Ile Lys Thr Leu Lys Pro Gly Thr Met Ser Pro Glu Ala Phe Leu Gln Glu Ala Gln Val Met Lys Lys Leu Arg His Glu Lys Leu Val Gln Leu Tyr Ala Val Val Ser Glu Glu Pro Ile Tyr Ile Val Xaa Glu Tyr Met Ser Lys Gly Ser Leu Leu Asp Phe Leu Lys Gly Glu Met Gly Lys Tyr Leu Arg $100 \hspace{1cm} 105 \hspace{1cm} 110 \hspace{1cm}$ Leu Pro Gln Leu Val Asp Met Ala Ala Gln Ile Ala Ser Gly Met Ala Tyr Val Glu Arg Met Asn Tyr Val His Arg Asp Leu Arg Ala Ala Asn Ile Leu Val Gly Glu Asn Leu Val Cys Lys Val Ala Asp Phe Gly Leu 150 155 Ala Arg Leu Ile Glu Asp Asn Glu Tyr Thr Ala Arg Gln Gly Ala Lys 165 170 Phe Pro Ile Lys Trp Thr Ala Pro Glu Ala Ala Leu Tyr Gly Arg Phe Thr Ile Lys Ser Asp Val Trp Ser Phe Gly Ile Leu Leu Thr Glu Leu 200 Thr Thr Lys Gly Arg Val Pro Tyr Pro Gly Met Val Asn Arg Glu Val 215 Leu Asp Gln Val Glu Arg Gly Tyr Arg Met Pro Cys Pro Pro Glu Cys 230 Pro Glu Ser Leu His Asp Leu Met Cys Gln Cys Trp Arg Lys Asp Pro Glu Glu Arg Pro Thr Phe Glu Tyr Leu Gln Ala Phe Leu Glu Asp Tyr 260 265 Phe Thr Ser Thr Glu Pro Gln Tyr Gln Pro Gly Glu Asn Leu <210> SEQ ID NO 8 <211> LENGTH: 283 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223 > OTHER INFORMATION: synthetic Gallus gallus proto-oncogene [T338C]c-Src (251-533) (c-Src "ES1") <400> SEQUENCE: 8 Gln Thr Gln Gly Leu Ala Lys Asp Ala Trp Glu Ile Pro Arg Glu Ser 10 Leu Arg Leu Glu Val Lys Leu Gly Gln Gly Cys Phe Gly Glu Val Trp 25 Met Gly Thr Trp Asn Gly Thr Thr Arg Val Ala Ile Lys Thr Leu Lys 40 Pro Gly Thr Met Ser Pro Glu Ala Phe Leu Gln Glu Ala Gln Val Met 55

Lys Lys Leu Arg His Glu Lys Leu Val Gln Leu Tyr Ala Val Val Ser Glu Glu Pro Ile Tyr Ile Val Cys Glu Tyr Met Ser Lys Gly Ser Leu Leu Asp Phe Leu Lys Gly Glu Met Gly Lys Tyr Leu Arg Leu Pro Gln Leu Val Asp Met Ala Ala Gln Ile Ala Ser Gly Met Ala Tyr Val Glu Arg Met Asn Tyr Val His Arg Asp Leu Arg Ala Ala Asn Ile Leu Val Gly Glu Asn Leu Val Cys Lys Val Ala Asp Phe Gly Leu Ala Arg Leu 145 150 155 160 Ile Glu Asp Asn Glu Tyr Thr Ala Arg Gln Gly Ala Lys Phe Pro Ile Lys Trp Thr Ala Pro Glu Ala Ala Leu Tyr Gly Arg Phe Thr Ile Lys 185 Ser Asp Val Trp Ser Phe Gly Ile Leu Leu Thr Glu Leu Thr Thr Lys 200 Gly Arg Val Pro Tyr Pro Gly Met Val Asn Arg Glu Val Leu Asp Gln 215 Val Glu Arg Gly Tyr Arg Met Pro Cys Pro Pro Glu Cys Pro Glu Ser 230 Leu His Asp Leu Met Cys Gln Cys Trp Arg Lys Asp Pro Glu Glu Arg 250 Pro Thr Phe Glu Tyr Leu Gln Ala Phe Leu Glu Asp Tyr Phe Thr Ser 260 265 Thr Glu Pro Gln Tyr Gln Pro Gly Glu Asn Leu <210> SEQ ID NO 9 <211> LENGTH: 286 <212> TYPE: PRT <213 > ORGANISM: Artificial sequence <223> OTHER INFORMATION: synthetic Gallus gallus proto-oncogene GHM-[T338C]c-Src (251-533) (GHM at N-terminal) (c-Src "ES1") <400> SEQUENCE: 9 Gly His Met Gln Thr Gln Gly Leu Ala Lys Asp Ala Trp Glu Ile Pro Arg Glu Ser Leu Arg Leu Glu Val Lys Leu Gly Gln Gly Cys Phe Gly 20 25 30Glu Val Trp Met Gly Thr Trp Asn Gly Thr Thr Arg Val Ala Ile Lys Thr Leu Lys Pro Gly Thr Met Ser Pro Glu Ala Phe Leu Gln Glu Ala Gln Val Met Lys Lys Leu Arg His Glu Lys Leu Val Gln Leu Tyr Ala Val Val Ser Glu Glu Pro Ile Tyr Ile Val Cys Glu Tyr Met Ser Lys Gly Ser Leu Leu Asp Phe Leu Lys Gly Glu Met Gly Lys Tyr Leu Arg Leu Pro Gln Leu Val Asp Met Ala Ala Gln Ile Ala Ser Gly Met Ala Tyr Val Glu Arg Met Asn Tyr Val His Arg Asp Leu Arg Ala Ala Asn

	130					135					140				
145	Leu	Val	Gly	Glu	Asn 150	Leu	Val	Cys	Lys	Val 155	Ala	Asp	Phe	Gly	Leu 160
Ala	Arg	Leu	Ile	Glu 165	Asp	Asn	Glu	Tyr	Thr 170	Ala	Arg	Gln	Gly	Ala 175	Lys
Phe	Pro	Ile	Lys 180	Trp	Thr	Ala	Pro	Glu 185	Ala	Ala	Leu	Tyr	Gly 190	Arg	Phe
Thr	Ile	Lys 195	Ser	Asp	Val	Trp	Ser 200	Phe	Gly	Ile	Leu	Leu 205	Thr	Glu	Leu
Thr	Thr 210		Gly	Arg	Val	Pro 215	Tyr	Pro	Gly	Met	Val 220	Asn	Arg	Glu	Val
Leu 225	Asp	Gln	Val	Glu	Arg 230	Gly	Tyr	Arg	Met	Pro 235	CÀa	Pro	Pro	Glu	Cys 240
Pro	Glu	Ser	Leu	His 245	Asp	Leu	Met	Cys	Gln 250	Cya	Trp	Arg	Lys	Asp 255	Pro
Glu	Glu	Arg	Pro 260	Thr	Phe	Glu	Tyr	Leu 265	Gln	Ala	Phe	Leu	Glu 270	Asp	Tyr
Phe	Thr	Ser 275	Thr	Glu	Pro	Gln	Tyr 280	Gln	Pro	Gly	Glu	Asn 285	Leu		
<pre><210> SEQ ID NO 10 <211> LENGTH: 283 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic Gallus gallus proto-oncogene [T338X</pre>															
	D> SI							_					_		
		2 ČO PI	ICE :	10											
Gln 1	Thr				Ala	Lys	Asp	Ala	Trp	Glu	Ile	Pro	Arg	Glu 15	
1	Thr Arg	Gln	Gly	Leu 5					10					15	Ser
1 Leu		Gln	Gly Glu 20	Leu 5 Val	Lys	Leu	Gly	Gln 25	10 Gly	Cys	Phe	Gly	Glu 30	15 Val	Ser Trp
1 Leu Met	Arg	Gln Leu Thr 35	Gly Glu 20 Trp	Leu 5 Val Asn	Lys Gly	Leu Thr Glu	Gly Thr 40	Gln 25 Arg	10 Gly Val Leu	Cys Ala Gln	Phe Ile	Gly Lys 45	Glu 30 Thr	15 Val Leu	Ser Trp Lys
1 Leu Met Pro	Arg Gly	Gln Leu Thr 35 Thr	Glu 20 Trp Met	Leu 5 Val Asn Ser	Lys Gly Pro	Leu Thr Glu 55	Gly Thr 40 Ala	Gln 25 Arg Phe	10 Gly Val Leu	Cys Ala Gln	Phe Ile Glu 60	Gly Lys 45 Ala	Glu 30 Thr	15 Val Leu Val	Ser Trp Lys Met
Leu Met Pro Lys	Arg Gly Gly 50	Gln Leu Thr 35 Thr	Glu 20 Trp Met	Leu 5 Val Asn Ser	Lys Gly Pro Glu 70	Leu Thr Glu 55 Lys	Gly Thr 40 Ala Leu	Gln 25 Arg Phe Xaa	10 Gly Val Leu Gln	Cys Ala Gln Leu 75	Phe Ile Glu 60 Tyr	Gly Lys 45 Ala	Glu 30 Thr Gln Val	15 Val Leu Val	Ser Trp Lys Met Ser 80
Leu Met Pro Lys 65 Glu	Arg Gly Gly 50 Lys	Gln Leu Thr 35 Thr Leu Pro	Glu 20 Trp Met Arg	Leu 5 Val Asn Ser His	Lys Gly Pro Glu 70 Ile	Leu Thr Glu 55 Lys Val	Gly Thr 40 Ala Leu Xaa	Gln 25 Arg Phe Xaa Glu	10 Gly Val Leu Gln Tyr 90	Cys Ala Gln Leu 75	Phe Ile Glu 60 Tyr	Gly Lys 45 Ala Ala	Glu 30 Thr Gln Val	Val Leu Val Val Ser	Ser Trp Lys Met Ser 80 Leu
1 Leu Met Pro Lys 65 Glu Leu	Arg Gly 50 Lys Glu	Gln Leu Thr 35 Thr Leu Pro	Glu 20 Trp Met Arg Ile Leu 100	Leu 5 Val Asn Ser His Tyr 85 Lys	Lys Gly Pro Glu 70 Ile Gly	Leu Thr Glu 55 Lys Val	Gly Thr 40 Ala Leu Xaa Met	Gln 25 Arg Phe Xaa Glu Gly 105	10 Gly Val Leu Gln Tyr 90 Lys	Cys Ala Gln Leu 75 Met	Phe Ile Glu 60 Tyr Ser	Gly Lys 45 Ala Ala Lys	Glu 30 Thr Gln Val Gly Leu 110	Val Leu Val Val Ser 95 Pro	Ser Trp Lys Met Ser 80 Leu Gln
1 Leu Met Pro Lys 65 Glu Leu	Arg Gly Sly Substitute of the state of the s	Gln Leu Thr 35 Thr Leu Pro Phe Asp 115	Gly Glu 20 Trp Met Arg Ile Leu 100 Met	Leu 5 Val Asn Ser His Tyr 85 Lys	Lys Gly Pro Glu 70 Ile Gly Ala	Leu Thr Glu 55 Lys Val Glu Glu	Gly Thr 40 Ala Leu Xaa Met Ile 120	Gln 25 Arg Phe Xaa Glu Gly 105 Ala	10 Gly Val Leu Gln Tyr 90 Lys Ser	Cys Ala Gln Leu 75 Met Tyr	Phe Ile Glu 60 Tyr Ser Leu Met	Gly Lys 45 Ala Ala Lys Arg Ala 125	Glu 30 Thr Gln Val Gly Leu 110	15 Val Leu Val Val Ser 95 Pro Val	Ser Trp Lys Met Ser 80 Leu Gln Glu
1 Leu Met Pro Lys 65 Glu Leu Leu	Arg Gly 50 Lys Glu Asp Val	Gln Leu Thr 35 Thr Leu Pro Phe Asp 115 Asn	Gly Glu 20 Trp Met Arg Ile Leu 100 Met	Leu 5 Val Asn Ser His Lys Ala Val	Lys Gly Pro Glu 70 Ile Gly Ala	Leu Thr Glu 55 Lys Val Glu Gln Arg 135	Gly Thr 40 Ala Leu Xaa Met Ile 120 Asp	Gln 25 Arg Phe Xaa Glu Gly 105 Ala Leu	10 Gly Val Leu Gln Tyr 90 Lys Ser Arg	Cys Ala Gln Leu 75 Met Tyr Gly Ala	Phe Ile Glu 60 Tyr Ser Leu Met Ala 140	Gly Lys 45 Ala Ala Lys Arg Ala 125 Asn	Glu 30 Thr Gln Val Gly Leu 110 Tyr	15 Val Leu Val Ser 95 Pro Val Leu	Ser Trp Lys Met Ser 80 Leu Gln Glu Val
1 Leu Met Pro Lys 65 Glu Leu Leu Arg Gly 145	Arg Gly Sly So Lys Glu Asp Val	Gln Leu Thr 35 Thr Leu Pro Phe Asp 115 Asn	Gly Glu 20 Trp Met Arg Ile Leu 100 Met Tyr	Leu 5 Val Asn Ser His Lys Ala Val	Lys Gly Pro Glu 70 Ile Gly Ala His	Leu Thr Glu 55 Lys Val Glu Gln Arg 135 Lys	Gly Thr 40 Ala Leu Xaa Met Ile 120 Asp	Gln 25 Arg Phe Xaa Glu Gly 105 Ala Leu	10 Gly Val Leu Gln Tyr 90 Lys Ser Arg	Cys Ala Gln Leu 75 Met Tyr Gly Ala Phe 155	Phe Ile Glu 60 Tyr Ser Leu Met Ala 140 Gly	Gly Lys 45 Ala Ala Lys Arg Ala 125 Asn Leu	Glu 30 Thr Gln Val Gly Leu 110 Tyr Ile Ala	15 Val Leu Val Ser 95 Pro Val Leu Arg	Ser Trp Lys Met Ser 80 Leu Gln Glu Val

Ser Asp Val Trp Ser Phe Gly Ile Leu Leu Thr Glu Leu Thr Thr Lys 200 Gly Arg Val Pro Tyr Pro Gly Met Val Asn Arg Glu Val Leu Asp Gln Val Glu Arg Gly Tyr Arg Met Pro Cys Pro Pro Glu Cys Pro Glu Ser Leu His Asp Leu Met Cys Gln Cys Trp Arg Lys Asp Pro Glu Glu Arg 250 Pro Thr Phe Glu Tyr Leu Gln Ala Phe Leu Glu Asp Tyr Phe Thr Ser Thr Glu Pro Gln Tyr Gln Pro Gly Glu Asn Leu <210> SEQ ID NO 11 <211> LENGTH: 286 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic Gallus gallus proto-oncogene GHM-[T338X, V323X]c-Src (251-533) (GHM at N-terminal) <220> FEATURE: <221> NAME/KEY: VARIANT <222> LOCATION: (76)..(91) <223> OTHER INFORMATION: Xaa = any naturally occurring amino acid <400> SEQUENCE: 11 Gly His Met Gln Thr Gln Gly Leu Ala Lys Asp Ala Trp Glu Ile Pro Arg Glu Ser Leu Arg Leu Glu Val Lys Leu Gly Gln Gly Cys Phe Gly Glu Val Trp Met Gly Thr Trp Asn Gly Thr Thr Arg Val Ala Ile Lys Thr Leu Lys Pro Gly Thr Met Ser Pro Glu Ala Phe Leu Gln Glu Ala Gln Val Met Lys Lys Leu Arg His Glu Lys Leu Xaa Gln Leu Tyr Ala Val Val Ser Glu Glu Pro Ile Tyr Ile Val Xaa Glu Tyr Met Ser Lys Gly Ser Leu Leu Asp Phe Leu Lys Gly Glu Met Gly Lys Tyr Leu Arg Leu Pro Gln Leu Val Asp Met Ala Ala Gln Ile Ala Ser Gly Met Ala Tyr Val Glu Arg Met Asn Tyr Val His Arg Asp Leu Arg Ala Ala Asn Ile Leu Val Gly Glu Asn Leu Val Cys Lys Val Ala Asp Phe Gly Leu Ala Arg Leu Ile Glu Asp Asn Glu Tyr Thr Ala Arg Gln Gly Ala Lys 170 Phe Pro Ile Lys Trp Thr Ala Pro Glu Ala Ala Leu Tyr Gly Arg Phe Thr Ile Lys Ser Asp Val Trp Ser Phe Gly Ile Leu Leu Thr Glu Leu Thr Thr Lys Gly Arg Val Pro Tyr Pro Gly Met Val Asn Arg Glu Val Leu Asp Gln Val Glu Arg Gly Tyr Arg Met Pro Cys Pro Pro Glu Cys 235

-continued

Pro Glu Ser Leu His Asp Leu Met Cys Gln Cys Trp Arg Lys Asp Pro 245 250 Glu Glu Arg Pro Thr Phe Glu Tyr Leu Gln Ala Phe Leu Glu Asp Tyr 265 Phe Thr Ser Thr Glu Pro Gln Tyr Gln Pro Gly Glu Asn Leu <210> SEQ ID NO 12 <211> LENGTH: 283 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <223> OTHER INFORMATION: synthetic Gallus gallus proto-oncogene [T338C, V323X]c-Src (251-533) <220> FEATURE: <221> NAME/KEY: VARIANT <222> LOCATION: (73)..(73) <223> OTHER INFORMATION: Xaa = any naturally occurring amino acid <400> SEQUENCE: 12 Gln Thr Gln Gly Leu Ala Lys Asp Ala Trp Glu Ile Pro Arg Glu Ser Leu Arg Leu Glu Val Lys Leu Gly Gln Gly Cys Phe Gly Glu Val Trp Met Gly Thr Trp Asn Gly Thr Thr Arg Val Ala Ile Lys Thr Leu Lys 40 Pro Gly Thr Met Ser Pro Glu Ala Phe Leu Gln Glu Ala Gln Val Met 55 Lys Lys Leu Arg His Glu Lys Leu Xaa Gln Leu Tyr Ala Val Val Ser Glu Glu Pro Ile Tyr Ile Val Cys Glu Tyr Met Ser Lys Gly Ser Leu Leu Asp Phe Leu Lys Gly Glu Met Gly Lys Tyr Leu Arg Leu Pro Gln 105 Leu Val Asp Met Ala Ala Gln Ile Ala Ser Gly Met Ala Tyr Val Glu 120 Arg Met Asn Tyr Val His Arg Asp Leu Arg Ala Ala Asn Ile Leu Val Gly Glu Asn Leu Val Cys Lys Val Ala Asp Phe Gly Leu Ala Arg Leu 155 Ile Glu Asp Asn Glu Tyr Thr Ala Arg Gln Gly Ala Lys Phe Pro Ile Lys Trp Thr Ala Pro Glu Ala Ala Leu Tyr Gly Arg Phe Thr Ile Lys Ser Asp Val Trp Ser Phe Gly Ile Leu Leu Thr Glu Leu Thr Thr Lys Gly Arg Val Pro Tyr Pro Gly Met Val Asn Arg Glu Val Leu Asp Gln Val Glu Arg Gly Tyr Arg Met Pro Cys Pro Pro Glu Cys Pro Glu Ser Leu His Asp Leu Met Cys Gln Cys Trp Arg Lys Asp Pro Glu Glu Arg 250 Pro Thr Phe Glu Tyr Leu Gln Ala Phe Leu Glu Asp Tyr Phe Thr Ser Thr Glu Pro Gln Tyr Gln Pro Gly Glu Asn Leu 280

```
<210> SEQ ID NO 13
<211> LENGTH: 286
<212> TYPE: PRT
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthetic Gallus gallus proto-oncogene
     GHM-[T338C, V323X]c-Src (251-533) (GHM at N-terminal)
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: (76)..(76)
<223> OTHER INFORMATION: Xaa = any naturally occurring amino acid
<400> SEQUENCE: 13
Gly His Met Gln Thr Gln Gly Leu Ala Lys Asp Ala Trp Glu Ile Pro
Arg Glu Ser Leu Arg Leu Glu Val Lys Leu Gly Gln Gly Cys Phe Gly 20 25 30
Glu Val Trp Met Gly Thr Trp Asn Gly Thr Thr Arg Val Ala Ile Lys _{\rm 35} _{\rm 40} _{\rm 45}
Thr Leu Lys Pro Gly Thr Met Ser Pro Glu Ala Phe Leu Gln Glu Ala
Gln Val Met Lys Lys Leu Arg His Glu Lys Leu Xaa Gln Leu Tyr Ala
Val Val Ser Glu Glu Pro Ile Tyr Ile Val Cys Glu Tyr Met Ser Lys
Gly Ser Leu Leu Asp Phe Leu Lys Gly Glu Met Gly Lys Tyr Leu Arg
Leu Pro Gln Leu Val Asp Met Ala Ala Gln Ile Ala Ser Gly Met Ala
                           120
Tyr Val Glu Arg Met Asn Tyr Val His Arg Asp Leu Arg Ala Ala Asn
                                           140
                     135
Ile Leu Val Gly Glu Asn Leu Val Cys Lys Val Ala Asp Phe Gly Leu
                   150
                                        155
Ala Arg Leu Ile Glu Asp Asn Glu Tyr Thr Ala Arg Gln Gly Ala Lys
Phe Pro Ile Lys Trp Thr Ala Pro Glu Ala Ala Leu Tyr Gly Arg Phe
                      185
Thr Ile Lys Ser Asp Val Trp Ser Phe Gly Ile Leu Leu Thr Glu Leu
Thr Thr Lys Gly Arg Val Pro Tyr Pro Gly Met Val Asn Arg Glu Val
Leu Asp Gln Val Glu Arg Gly Tyr Arg Met Pro Cys Pro Pro Glu Cys
Pro Glu Ser Leu His Asp Leu Met Cys Gln Cys Trp Arg Lys Asp Pro
Glu Glu Arg Pro Thr Phe Glu Tyr Leu Gln Ala Phe Leu Glu Asp Tyr
Phe Thr Ser Thr Glu Pro Gln Tyr Gln Pro Gly Glu Asn Leu
                            280
<210> SEQ ID NO 14
<211 > LENGTH: 283
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthetic Gallus gallus proto-oncogene [T338C,
      V323A]c-Src (251-533) (c-Src "ES2")
```

<400> SEQUENCE: 14

-continued

Gln Thr Gln Gly Leu Ala Lys Asp Ala Trp Glu Ile Pro Arg Glu Ser Leu Arg Leu Glu Val Lys Leu Gly Gln Gly Cys Phe Gly Glu Val Trp Met Gly Thr Trp Asn Gly Thr Thr Arg Val Ala Ile Lys Thr Leu Lys Pro Gly Thr Met Ser Pro Glu Ala Phe Leu Gln Glu Ala Gln Val Met Lys Lys Leu Arg His Glu Lys Leu Ala Gln Leu Tyr Ala Val Val Ser Glu Glu Pro Ile Tyr Ile Val Cys Glu Tyr Met Ser Lys Gly Ser Leu Leu Asp Phe Leu Lys Gly Glu Met Gly Lys Tyr Leu Arg Leu Pro Gln Leu Val Asp Met Ala Ala Gln Ile Ala Ser Gly Met Ala Tyr Val Glu Arg Met Asn Tyr Val His Arg Asp Leu Arg Ala Ala Asn Ile Leu Val Gly Glu Asn Leu Val Cys Lys Val Ala Asp Phe Gly Leu Ala Arg Leu Ile Glu Asp Asn Glu Tyr Thr Ala Arg Gln Gly Ala Lys Phe Pro Ile 170 Lys Trp Thr Ala Pro Glu Ala Ala Leu Tyr Gly Arg Phe Thr Ile Lys 180 185 Ser Asp Val Trp Ser Phe Gly Ile Leu Leu Thr Glu Leu Thr Thr Lys 200 Gly Arg Val Pro Tyr Pro Gly Met Val Asn Arg Glu Val Leu Asp Gln 215 Val Glu Arg Gly Tyr Arg Met Pro Cys Pro Pro Glu Cys Pro Glu Ser 230 Leu His Asp Leu Met Cys Gln Cys Trp Arg Lys Asp Pro Glu Glu Arg 245 250 Pro Thr Phe Glu Tyr Leu Gln Ala Phe Leu Glu Asp Tyr Phe Thr Ser Thr Glu Pro Gln Tyr Gln Pro Gly Glu Asn Leu 275 <210> SEQ ID NO 15 <211> LENGTH: 286 <212> TYPE: PRT <213 > ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic Gallus gallus proto-oncogene GHM-[T338C, V323A]c-Src (251-533) (GHM at N-terminal) (c-Src <400> SEQUENCE: 15 Gly His Met Gln Thr Gln Gly Leu Ala Lys Asp Ala Trp Glu Ile Pro 10 Arg Glu Ser Leu Arg Leu Glu Val Lys Leu Gly Gln Gly Cys Phe Gly 25 Glu Val Trp Met Gly Thr Trp Asn Gly Thr Thr Arg Val Ala Ile Lys Thr Leu Lys Pro Gly Thr Met Ser Pro Glu Ala Phe Leu Gln Glu Ala Gln Val Met Lys Lys Leu Arg His Glu Lys Leu Ala Gln Leu Tyr Ala

65					70					75					80	
Val	Val	Ser	Glu	Glu 85	Pro	Ile	Tyr	Ile	Val 90	СЛа	Glu	Tyr	Met	Ser 95	ГÀз	
Gly	Ser	Leu	Leu 100	Asp	Phe	Leu	Lys	Gly 105	Glu	Met	Gly	ГÀв	Tyr 110	Leu	Arg	
Leu	Pro	Gln 115	Leu	Val	Asp	Met	Ala 120	Ala	Gln	Ile	Ala	Ser 125	Gly	Met	Ala	
Tyr	Val 130	Glu	Arg	Met	Asn	Tyr 135	Val	His	Arg	Asp	Leu 140	Arg	Ala	Ala	Asn	
Ile 145	Leu	Val	Gly	Glu	Asn 150	Leu	Val	Cys	Lys	Val 155	Ala	Asp	Phe	Gly	Leu 160	
Ala	Arg	Leu	Ile	Glu 165	Asp	Asn	Glu	Tyr	Thr 170	Ala	Arg	Gln	Gly	Ala 175	Lys	
Phe	Pro	Ile	Lys 180	Trp	Thr	Ala	Pro	Glu 185	Ala	Ala	Leu	Tyr	Gly 190	Arg	Phe	
Thr	Ile	Lys 195	Ser	Asp	Val	Trp	Ser 200	Phe	Gly	Ile	Leu	Leu 205	Thr	Glu	Leu	
Thr	Thr 210	Lys	Gly	Arg	Val	Pro 215	Tyr	Pro	Gly	Met	Val 220	Asn	Arg	Glu	Val	
Leu 225	Asp	Gln	Val	Glu	Arg 230	Gly	Tyr	Arg	Met	Pro 235	Cys	Pro	Pro	Glu	Cys 240	
Pro	Glu	Ser	Leu	His 245	Asp	Leu	Met	Cys	Gln 250	Сув	Trp	Arg	Lys	Asp 255	Pro	
Glu	Glu	Arg	Pro 260	Thr	Phe	Glu	Tyr	Leu 265	Gln	Ala	Phe	Leu	Glu 270	Asp	Tyr	
Phe	Thr	Ser 275	Thr	Glu	Pro	Gln	Tyr 280	Gln	Pro	Gly	Glu	Asn 285	Leu			
<21: <21: <21: <22:		ENGTI (PE : RGAN: EATUI THER	H: 28 PRT ISM: RE: INFO	83 Art:	rion	: syı	- nthe	cic (allus	s pro	oto-«	onco	gene	[T338C,
< 40	O> SI	EQUEI	ICE :	16												
Gln 1	Thr	Gln	Gly	Leu 5	Ala	Lys	Asp	Ala	Trp 10	Glu	Ile	Pro	Arg	Glu 15	Ser	
Leu	Arg	Leu	Glu 20	Val	ГЛа	Leu	Gly	Gln 25	Gly	Cys	Phe	Gly	Glu 30	Val	Trp	
Met	Gly	Thr 35	Trp	Asn	Gly	Thr	Thr 40	Arg	Val	Ala	Ile	Lуз 45	Thr	Leu	Lys	
Pro	Gly 50	Thr	Met	Ser	Pro	Glu 55	Ala	Phe	Leu	Gln	Glu 60	Ala	Gln	Val	Met	
Lys	ГЛа	Leu	Arg	His	Glu 70	ГЛа	Leu	Ser	Gln	Leu 75	Tyr	Ala	Val	Val	Ser 80	
Glu	Glu	Pro	Ile	Tyr 85	Ile	Val	Cys	Glu	Tyr 90	Met	Ser	Lys	Gly	Ser 95	Leu	
Leu	Asp	Phe	Leu 100	Lys	Gly	Glu	Met	Gly 105	Lys	Tyr	Leu	Arg	Leu 110	Pro	Gln	
Leu	Val	Asp 115	Met	Ala	Ala	Gln	Ile 120	Ala	Ser	Gly	Met	Ala 125	Tyr	Val	Glu	
Arg	Met 130	Asn	Tyr	Val	His	Arg 135	Asp	Leu	Arg	Ala	Ala 140	Asn	Ile	Leu	Val	

```
Gly Glu Asn Leu Val Cys Lys Val Ala Asp Phe Gly Leu Ala Arg Leu
              150
                                       155
Ile Glu Asp Asn Glu Tyr Thr Ala Arg Gln Gly Ala Lys Phe Pro Ile
Lys Trp Thr Ala Pro Glu Ala Ala Leu Tyr Gly Arg Phe Thr Ile Lys
                     185
Ser Asp Val Trp Ser Phe Gly Ile Leu Leu Thr Glu Leu Thr Thr Lys
Gly Arg Val Pro Tyr Pro Gly Met Val Asn Arg Glu Val Leu Asp Gln
Val Glu Arg Gly Tyr Arg Met Pro Cys Pro Pro Glu Cys Pro Glu Ser
Leu His Asp Leu Met Cys Gln Cys Trp Arg Lys Asp Pro Glu Glu Arg
Pro Thr Phe Glu Tyr Leu Gln Ala Phe Leu Glu Asp Tyr Phe Thr Ser
Thr Glu Pro Gln Tyr Gln Pro Gly Glu Asn Leu
<210> SEO ID NO 17
<211> LENGTH: 286
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthetic Gallus gallus proto-oncogene
     \label{eq:GHM-T338C} GHM-[T338C, V323S]c-Src~(251-533)~(GHM~at~N-terminal)~(c-Src~
      "ES3")
<400> SEQUENCE: 17
Gly His Met Gln Thr Gln Gly Leu Ala Lys Asp Ala Trp Glu Ile Pro
                       10
Arg Glu Ser Leu Arg Leu Glu Val Lys Leu Gly Gln Gly Cys Phe Gly
Glu Val Trp Met Gly Thr Trp Asn Gly Thr Thr Arg Val Ala Ile Lys
Thr Leu Lys Pro Gly Thr Met Ser Pro Glu Ala Phe Leu Gln Glu Ala
Gln Val Met Lys Lys Leu Arg His Glu Lys Leu Ser Gln Leu Tyr Ala
Val Val Ser Glu Glu Pro Ile Tyr Ile Val Cys Glu Tyr Met Ser Lys
Gly Ser Leu Leu Asp Phe Leu Lys Gly Glu Met Gly Lys Tyr Leu Arg $100$ 105 110
Leu Pro Gln Leu Val Asp Met Ala Ala Gln Ile Ala Ser Gly Met Ala
Tyr Val Glu Arg Met Asn Tyr Val His Arg Asp Leu Arg Ala Ala Asn
Ile Leu Val Gly Glu Asn Leu Val Cys Lys Val Ala Asp Phe Gly Leu
                                       155
Ala Arg Leu Ile Glu Asp Asn Glu Tyr Thr Ala Arg Gln Gly Ala Lys
                                   170
Phe Pro Ile Lys Trp Thr Ala Pro Glu Ala Ala Leu Tyr Gly Arg Phe
                     185
Thr Ile Lys Ser Asp Val Trp Ser Phe Gly Ile Leu Leu Thr Glu Leu
Thr Thr Lys Gly Arg Val Pro Tyr Pro Gly Met Val Asn Arg Glu Val
```

-continued

215 Leu Asp Gln Val Glu Arg Gly Tyr Arg Met Pro Cys Pro Pro Glu Cys 230 235 Pro Glu Ser Leu His Asp Leu Met Cys Gln Cys Trp Arg Lys Asp Pro Glu Glu Arg Pro Thr Phe Glu Tyr Leu Gln Ala Phe Leu Glu Asp Tyr Phe Thr Ser Thr Glu Pro Gln Tyr Gln Pro Gly Glu Asn Leu <210> SEQ ID NO 18 <211> LENGTH: 283 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic Gallus gallus proto-oncogene [T338C, V323D]c-Src (251-533) (c-Src "ES4") <400> SEQUENCE: 18 Gln Thr Gln Gly Leu Ala Lys Asp Ala Trp Glu Ile Pro Arg Glu Ser Leu Arg Leu Glu Val Lys Leu Gly Gln Gly Cys Phe Gly Glu Val Trp 25 Met Gly Thr Trp Asn Gly Thr Thr Arg Val Ala Ile Lys Thr Leu Lys Pro Gly Thr Met Ser Pro Glu Ala Phe Leu Gln Glu Ala Gln Val Met Lys Lys Leu Arg His Glu Lys Leu Asp Gln Leu Tyr Ala Val Val Ser Glu Glu Pro Ile Tyr Ile Val Cys Glu Tyr Met Ser Lys Gly Ser Leu Leu Asp Phe Leu Lys Gly Glu Met Gly Lys Tyr Leu Arg Leu Pro Gln 105 Leu Val Asp Met Ala Ala Gln Ile Ala Ser Gly Met Ala Tyr Val Glu 120 Arg Met Asn Tyr Val His Arg Asp Leu Arg Ala Ala Asn Ile Leu Val Gly Glu Asn Leu Val Cys Lys Val Ala Asp Phe Gly Leu Ala Arg Leu Ile Glu Asp Asn Glu Tyr Thr Ala Arg Gln Gly Ala Lys Phe Pro Ile Lys Trp Thr Ala Pro Glu Ala Ala Leu Tyr Gly Arg Phe Thr Ile Lys Ser Asp Val Trp Ser Phe Gly Ile Leu Leu Thr Glu Leu Thr Thr Lys Gly Arg Val Pro Tyr Pro Gly Met Val Asn Arg Glu Val Leu Asp Gln 215 Val Glu Arg Gly Tyr Arg Met Pro Cys Pro Pro Glu Cys Pro Glu Ser Leu His Asp Leu Met Cys Gln Cys Trp Arg Lys Asp Pro Glu Glu Arg 250 Pro Thr Phe Glu Tyr Leu Gln Ala Phe Leu Glu Asp Tyr Phe Thr Ser 265 Thr Glu Pro Gln Tyr Gln Pro Gly Glu Asn Leu

```
<210> SEQ ID NO 19
<211> LENGTH: 286
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthetic Gallus gallus proto-oncogene
      GHM-[T338C, V323D]c-Src (251-533) (GHM at N-terminal) (c-Src
      "ES4")
<400> SEQUENCE: 19
Gly His Met Gln Thr Gln Gly Leu Ala Lys Asp Ala Trp Glu Ile Pro
Arg Glu Ser Leu Arg Leu Glu Val Lys Leu Gly Gln Gly Cys Phe Gly
Glu Val Trp Met Gly Thr Trp Asn Gly Thr Thr Arg Val Ala Ile Lys
Thr Leu Lys Pro Gly Thr Met Ser Pro Glu Ala Phe Leu Gln Glu Ala
Gln Val Met Lys Lys Leu Arg His Glu Lys Leu Asp Gln Leu Tyr Ala
65 70 75 80
Val Val Ser Glu Glu Pro Ile Tyr Ile Val Cys Glu Tyr Met Ser Lys
85 90 95
Gly Ser Leu Leu Asp Phe Leu Lys Gly Glu Met Gly Lys Tyr Leu Arg
          100
                             105
Leu Pro Gln Leu Val Asp Met Ala Ala Gln Ile Ala Ser Gly Met Ala
                  120
Tyr Val Glu Arg Met Asn Tyr Val His Arg Asp Leu Arg Ala Ala Asn
Ile Leu Val Gly Glu Asn Leu Val Cys Lys Val Ala Asp Phe Gly Leu
                150
                                       155
Ala Arg Leu Ile Glu Asp Asn Glu Tyr Thr Ala Arg Gln Gly Ala Lys
                                 170
Phe Pro Ile Lys Trp Thr Ala Pro Glu Ala Ala Leu Tyr Gly Arg Phe
Thr Ile Lys Ser Asp Val Trp Ser Phe Gly Ile Leu Leu Thr Glu Leu
Thr Thr Lys Gly Arg Val Pro Tyr Pro Gly Met Val Asn Arg Glu Val
            215
Leu Asp Gln Val Glu Arg Gly Tyr Arg Met Pro Cys Pro Pro Glu Cys
Pro Glu Ser Leu His Asp Leu Met Cys Gln Cys Trp Arg Lys Asp Pro
Glu Glu Arg Pro Thr Phe Glu Tyr Leu Gln Ala Phe Leu Glu Asp Tyr
Phe Thr Ser Thr Glu Pro Gln Tyr Gln Pro Gly Glu Asn Leu
<210> SEQ ID NO 20
<211> LENGTH: 283
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthetic Gallus gallus proto-oncogene [T338C,
     V323E]c-Src (251-533) (c-Src "ES5")
<400> SEQUENCE: 20
Gln Thr Gln Gly Leu Ala Lys Asp Ala Trp Glu Ile Pro Arg Glu Ser
                         10
```

Leu Arg Leu Glu Val Lys Leu Gly Gln Gly Cys Phe Gly Glu Val Trp Met Gly Thr Trp Asn Gly Thr Thr Arg Val Ala Ile Lys Thr Leu Lys Pro Gly Thr Met Ser Pro Glu Ala Phe Leu Gln Glu Ala Gln Val Met Lys Lys Leu Arg His Glu Lys Leu Glu Gln Leu Tyr Ala Val Val Ser Glu Glu Pro Ile Tyr Ile Val Cys Glu Tyr Met Ser Lys Gly Ser Leu Leu Asp Phe Leu Lys Gly Glu Met Gly Lys Tyr Leu Arg Leu Pro Gln Leu Val Asp Met Ala Ala Gln Ile Ala Ser Gly Met Ala Tyr Val Glu Arg Met Asn Tyr Val His Arg Asp Leu Arg Ala Ala Asn Ile Leu Val 130 135 Gly Glu Asn Leu Val Cys Lys Val Ala Asp Phe Gly Leu Ala Arg Leu 150 155 Ile Glu Asp Asn Glu Tyr Thr Ala Arg Gln Gly Ala Lys Phe Pro Ile Lys Trp Thr Ala Pro Glu Ala Ala Leu Tyr Gly Arg Phe Thr Ile Lys 185 Ser Asp Val Trp Ser Phe Gly Ile Leu Leu Thr Glu Leu Thr Thr Lys 200 Gly Arg Val Pro Tyr Pro Gly Met Val Asn Arg Glu Val Leu Asp Gln 215 Val Glu Arg Gly Tyr Arg Met Pro Cys Pro Pro Glu Cys Pro Glu Ser Leu His Asp Leu Met Cys Gln Cys Trp Arg Lys Asp Pro Glu Glu Arg 250 Pro Thr Phe Glu Tyr Leu Gln Ala Phe Leu Glu Asp Tyr Phe Thr Ser Thr Glu Pro Gln Tyr Gln Pro Gly Glu Asn Leu <210> SEQ ID NO 21 <211> LENGTH: 286 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic Gallus gallus proto-oncogene GHM-[T338C, V323E]c-Src (251-533) (GHM at N-terminal) (c-Src <400> SEQUENCE: 21 Gly His Met Gln Thr Gln Gly Leu Ala Lys Asp Ala Trp Glu Ile Pro 10 Arg Glu Ser Leu Arg Leu Glu Val Lys Leu Gly Gln Gly Cys Phe Gly Glu Val Trp Met Gly Thr Trp Asn Gly Thr Thr Arg Val Ala Ile Lys Thr Leu Lys Pro Gly Thr Met Ser Pro Glu Ala Phe Leu Gln Glu Ala Gln Val Met Lys Lys Leu Arg His Glu Lys Leu Glu Gln Leu Tyr Ala

```
Val Val Ser Glu Glu Pro Ile Tyr Ile Val Cys Glu Tyr Met Ser Lys
               85
Gly Ser Leu Leu Asp Phe Leu Lys Gly Glu Met Gly Lys Tyr Leu Arg
Leu Pro Gln Leu Val Asp Met Ala Ala Gln Ile Ala Ser Gly Met Ala
              120
Tyr Val Glu Arg Met Asn Tyr Val His Arg Asp Leu Arg Ala Ala Asn
Ile Leu Val Gly Glu Asn Leu Val Cys Lys Val Ala Asp Phe Gly Leu
Ala Arg Leu Ile Glu Asp Asn Glu Tyr Thr Ala Arg Gln Gly Ala Lys
Phe Pro Ile Lys Trp Thr Ala Pro Glu Ala Ala Leu Tyr Gly Arg Phe
Thr Ile Lys Ser Asp Val Trp Ser Phe Gly Ile Leu Leu Thr Glu Leu
Thr Thr Lys Gly Arg Val Pro Tyr Pro Gly Met Val Asn Arg Glu Val
Leu Asp Gln Val Glu Arg Gly Tyr Arg Met Pro Cys Pro Pro Glu Cys
                 230
Pro Glu Ser Leu His Asp Leu Met Cys Gln Cys Trp Arg Lys Asp Pro
             245
                        250
Glu Glu Arg Pro Thr Phe Glu Tyr Leu Gln Ala Phe Leu Glu Asp Tyr
                             265
Phe Thr Ser Thr Glu Pro Gln Tyr Gln Pro Gly Glu Asn Leu
<210> SEQ ID NO 22
<211> LENGTH: 283
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthetic Gallus gallus proto-oncogene [T338C,
     V323H]c-Src (251-533) (c-Src "ES6")
<400> SEQUENCE: 22
Gln Thr Gln Gly Leu Ala Lys Asp Ala Trp Glu Ile Pro Arg Glu Ser
Leu Arg Leu Glu Val Lys Leu Gly Gln Gly Cys Phe Gly Glu Val Trp
Met Gly Thr Trp Asn Gly Thr Thr Arg Val Ala Ile Lys Thr Leu Lys
Pro Gly Thr Met Ser Pro Glu Ala Phe Leu Gln Glu Ala Gln Val Met
Lys Lys Leu Arg His Glu Lys Leu His Gln Leu Tyr Ala Val Val Ser
Glu Glu Pro Ile Tyr Ile Val Cys Glu Tyr Met Ser Lys Gly Ser Leu
Leu Asp Phe Leu Lys Gly Glu Met Gly Lys Tyr Leu Arg Leu Pro Gln
                    105
Leu Val Asp Met Ala Ala Gln Ile Ala Ser Gly Met Ala Tyr Val Glu
                         120
Arg Met Asn Tyr Val His Arg Asp Leu Arg Ala Ala Asn Ile Leu Val
                     135
Gly Glu Asn Leu Val Cys Lys Val Ala Asp Phe Gly Leu Ala Arg Leu
        150
                             155
```

Ile Glu Asp Asn Glu Tyr Thr Ala Arg Gln Gly Ala Lys Phe Pro Ile Lys Trp Thr Ala Pro Glu Ala Ala Leu Tyr Gly Arg Phe Thr Ile Lys 185 Ser Asp Val Trp Ser Phe Gly Ile Leu Leu Thr Glu Leu Thr Thr Lys Gly Arg Val Pro Tyr Pro Gly Met Val Asn Arg Glu Val Leu Asp Gln Val Glu Arg Gly Tyr Arg Met Pro Cys Pro Pro Glu Cys Pro Glu Ser Leu His Asp Leu Met Cys Gln Cys Trp Arg Lys Asp Pro Glu Glu Arg Pro Thr Phe Glu Tyr Leu Gln Ala Phe Leu Glu Asp Tyr Phe Thr Ser Thr Glu Pro Gln Tyr Gln Pro Gly Glu Asn Leu <210> SEO ID NO 23 <211> LENGTH: 286 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic Gallus gallus proto-oncogene $\label{eq:GHM-T338C} GHM-[T338C,\ V323H]c-Src\ (251-533)\ (GHM\ at\ N-terminal)\ (c-Src$ <400> SEQUENCE: 23 Gly His Met Gln Thr Gln Gly Leu Ala Lys Asp Ala Trp Glu Ile Pro Arg Glu Ser Leu Arg Leu Glu Val Lys Leu Gly Gln Gly Cys Phe Gly Glu Val Trp Met Gly Thr Trp Asn Gly Thr Thr Arg Val Ala Ile Lys Thr Leu Lys Pro Gly Thr Met Ser Pro Glu Ala Phe Leu Gln Glu Ala Gln Val Met Lys Lys Leu Arg His Glu Lys Leu His Gln Leu Tyr Ala Val Val Ser Glu Glu Pro Ile Tyr Ile Val Cys Glu Tyr Met Ser Lys Gly Ser Leu Leu Asp Phe Leu Lys Gly Glu Met Gly Lys Tyr Leu Arg 105 Leu Pro Gln Leu Val Asp Met Ala Ala Gln Ile Ala Ser Gly Met Ala Tyr Val Glu Arg Met Asn Tyr Val His Arg Asp Leu Arg Ala Ala Asn Ile Leu Val Gly Glu Asn Leu Val Cys Lys Val Ala Asp Phe Gly Leu 155 Ala Arg Leu Ile Glu Asp Asn Glu Tyr Thr Ala Arg Gln Gly Ala Lys Phe Pro Ile Lys Trp Thr Ala Pro Glu Ala Ala Leu Tyr Gly Arg Phe Thr Ile Lys Ser Asp Val Trp Ser Phe Gly Ile Leu Leu Thr Glu Leu 200 Thr Thr Lys Gly Arg Val Pro Tyr Pro Gly Met Val Asn Arg Glu Val 215

-continued

Leu Asp Gln Val Glu Arg Gly Tyr Arg Met Pro Cys Pro Pro Glu Cys 230 Pro Glu Ser Leu His Asp Leu Met Cys Gln Cys Trp Arg Lys Asp Pro Glu Glu Arg Pro Thr Phe Glu Tyr Leu Gln Ala Phe Leu Glu Asp Tyr 265 Phe Thr Ser Thr Glu Pro Gln Tyr Gln Pro Gly Glu Asn Leu <210> SEQ ID NO 24 <211> LENGTH: 570 <212> TYPE: PRT <213> ORGANISM: Arabidopsis thaliana <220> FEATURE: <223> OTHER INFORMATION: hypothetical Ser-Thr protein kinase, kinase with gatekeeper Cys <400> SEQUENCE: 24 Met Ala Val Asp Val Lys Ser Val Leu Glu Phe Leu Arg Arg Asn Gly Leu Thr Glu Ala Glu Ser Ala Leu Arg Asp Asp Ile Asn Glu Lys Asn Lys Leu Ala Ser Phe Asp Phe Glu Lys Phe Leu Phe Pro Ile Pro Thr 40 Pro Ile Lys Ile Thr Ala Ser Ser Arg Pro Ser Asp Ser Gly Gly Asp Gly Ser Asn Ser Lys Ser Ser Ser Ser Asp Asp Glu Phe Val Ser Leu Asp Ser Ser Thr Ser Gly Phe Cys Ser Ser Ser Gly Phe Val Asn Pro 90 Tyr Gly Asp Ser Ser Ser Ser Ser Gly Gln Ser Gln Phe Gly Thr 105 Ala Arg Thr Tyr Pro Glu Trp Ser Glu Phe Tyr Leu His Asn Glu Thr Glu Asp Glu Asp Glu Phe Met Ser Pro Ala Phe Arg Glu Ser Asp Cys 135 Phe Ile Leu Pro Glu Asn Ala Glu Asp Lys Phe Ile Thr Asp Asn Gln Phe Glu Asn Ser Leu Gly Val Tyr Asp Arg Ser Ser Ser Gln Gly Ser Leu Thr Glu Ala Ser Leu Asp Tyr Leu Asp Lys Pro Phe Leu Leu Asp Ile Gly Leu Glu Asp Lys Thr Asp Glu Leu Asp Leu Lys Thr Gly Asp Gln Leu Asn Val Thr Asp Glu Glu Val Asp Val Val His Glu Val Glu 215 Asp Glu Tyr Glu Val Phe Asn Leu Arg Ile Ile His Trp Lys Asn Arg 230 Thr Gly Phe Glu Glu Asn Lys Asp Leu Pro Ile Val Ile Asn Thr Val 250 Ile Gly Gly Arg Tyr Tyr Ile Thr Glu Tyr Ile Gly Ser Ala Ala Phe Ser Lys Val Val Gln Ala Gln Asp Leu His Asn Gly Val Asp Val Cys 280 Leu Lys Ile Ile Lys Asn Asp Lys Asp Phe Phe Asp Gln Ser Leu Asp

Glu 305	Ile	Lys	Leu	Leu	Lys 310	His	Val	Asn	Lys	His 315	Asp	Pro	Ala	Asp	Glu 320
His	His	Ile	Leu	Arg 325	Leu	Tyr	Aap	Tyr	Phe 330	Tyr	His	Gln	Glu	His 335	Leu
Phe	Ile	Val	Cys 340	Glu	Leu	Leu	Arg	Ala 345	Asn	Leu	Tyr	Glu	Phe 350	Gln	Lys
Phe	Asn	Gln 355	Glu	Ser	Gly	Gly	Glu 360	Pro	Tyr	Phe	Asn	Leu 365	Ser	Arg	Leu
Gln	Val 370	Ile	Thr	Arg	Gln	Cys 375	Leu	Asp	Ala	Leu	Val 380	Phe	Leu	His	Gly
Leu 385	Gly	Ile	Ile	His	Cys 390	Asp	Leu	Lys	Pro	Glu 395	Asn	Ile	Leu	Ile	Lys 400
Ser	Tyr	Lys	Arg	Сув 405	Ala	Val	Lys	Ile	Ile 410	Asp	Leu	Gly	Ser	Ser 415	Сув
Phe	Arg	Ser	Asp 420	Asn	Leu	Cys	Leu	Tyr 425	Val	Gln	Ser	Arg	Ser 430	Tyr	Arg
Ala	Pro	Glu 435	Val	Ile	Leu	Gly	Leu 440	Pro	Tyr	Asp	Glu	Lys 445	Ile	Asp	Leu
Trp	Ser 450	Leu	Gly	Сув	Ile	Leu 455	Ala	Glu	Leu	Cys	Ser 460	Gly	Glu	Val	Leu
Phe 465	Pro	Asn	Glu	Ala	Val 470	Ala	Met	Ile	Leu	Ala 475	Arg	Ile	Val	Ala	Val 480
Leu	Gly	Pro	Ile	Glu 485	Thr	Glu	Met	Leu	Glu 490	Lys	Gly	Gln	Glu	Thr 495	His
ГÀз	Tyr	Phe	Thr 500	Lys	Glu	Tyr	Asp	Leu 505	Tyr	His	Leu	Asn	Glu 510	Glu	Ser
Asn	Glu	Ile 515	Glu	Tyr	Ile	Ile	Thr 520	Glu	Glu	Ser	Ser	Leu 525	Glu	Glu	Gln
Leu	Gln 530	Val	Ser	Asp	Glu	Leu 535	Phe	Leu	Asp	Phe	Val 540	Arg	Thr	Leu	Leu
Asp 545	Ile	Asn	Pro	Leu	Arg 550	Arg	Pro	Thr	Ala	Leu 555	Glu	Ala	Leu	Asn	His 560
Pro	Trp	Leu	Ser	Ser 565	Ser	Ser	Ser	Tyr	Asn 570						
<211 <212 <213 <220 <223)> FE S> OT Wi	NGTH PE: CGANI ATUR HER th c	H: 27 PRT SM: E: INFO	76 Arak ORMAT Keepe	ION:	: hyp	tha] oothe			er-Tl	ır pı	rotei	in ki	inase	e, kinase
)> SE				Cor	Lou	7 an	Cl.	T1.0	Lina	Lou	Lou	Trea	The raw	Val
1	Pne	Pne	Asp	5	ser	ьеu	Asp	GIU	10	пув	ьeu	ьeu	гув	Tyr 15	vai
Asn	ГЛа	His	Asp 20	Pro	Ala	Asp	Lys	Tyr 25	His	Leu	Leu	Arg	Leu 30	Tyr	Asp
Tyr	Phe	Tyr 35	Tyr	Arg	Glu	His	Leu 40	Leu	Ile	Val	Cys	Glu 45	Leu	Leu	Lys
Ala	Asn 50	Leu	Tyr	Glu	Phe	His 55	Lys	Phe	Asn	Arg	Glu 60	Ser	Gly	Gly	Glu
Val 65	Tyr	Phe	Thr	Met	Pro 70	Arg	Leu	Gln	Ser	Ile 75	Thr	Ile	Gln	CÀa	Leu 80
Glu	Ser	Leu	Gln	Phe	Leu	His	Gly	Leu	Gly	Leu	Ile	His	Cys	Asp	Leu

				85					90					95	
Lys	Pro	Glu	Asn 100	Ile	Leu	Val	Lys	Ser 105	Tyr	Ser	Arg	Сла	Glu 110	Ile	Lys
Val	Ile	Asp 115	Leu	Gly	Ser	Ser	Cys 120	Phe	Glu	Thr	Asp	His 125	Leu	Cha	Ser
Tyr	Val 130	Gln	Ser	Arg	Ser	Tyr 135	Arg	Ala	Pro	Glu	Val 140	Ile	Leu	Gly	Leu
Pro 145	Tyr	Asp	Lys	Lys	Ile 150	Asp	Val	Trp	Ser	Leu 155	Gly	Сув	Ile	Leu	Ala 160
Glu	Leu	Cys	Thr	Gly 165	Asn	Val	Leu	Phe	Arg 170	Asn	Asp	Ser	Pro	Ala 175	Ser
Leu	Leu	Ala	Arg 180	Val	Met	Gly	Ile	Val 185	Gly	Ser	Phe	Asp	Asn 190	Glu	Met
Leu	Thr	Lys 195	Gly	Arg	Asp	Ser	His 200	Lys	Tyr	Phe	Thr	Lys 205	Asn	Arg	Met
Leu	Tyr 210	Glu	Arg	Asn	Gln	Glu 215	Ser	Asn	Arg	Leu	Glu 220	Tyr	Leu	Ile	Pro
Lys 225	Arg	Thr	Ser	Leu	Arg 230	His	Arg	Leu	Pro	Met 235	Gly	Asp	Gln	Gly	Phe 240
Thr	Asp	Phe	Val	Ala 245	His	Leu	Leu	Glu	Ile 250	Asn	Pro	Lys	Lys	Arg 255	Pro
Ser	Ala	Ala	Glu 260	Ala	Leu	Lys	His	Pro 265	Trp	Leu	Ser	Tyr	Pro 270	Tyr	Glu
Pro	Ile	Ser 275	Ala												
<211 <212 <213 <220)> FE 3> O'I	ENGTH PE: RGANI EATUR THER	H: 61 PRT ISM: RE: INFO	L7 Arab	NOI	: put	ativ	7e se		e/thi	reoni	ine p	prote	ein k	inase
< 400)> SE	EQUEN	ICE :	26											
Met 1	Leu	Phe	Leu	Arg 5	Arg	Ile	Ala	Val	Val 10	Phe	Phe	Val	Phe	Thr 15	Ser
Phe	Ser	Ala	Ala 20	Gln	Asn	Ser	Thr	Сув 25	Pro	Leu	Asp	Phe	Ser 30	Val	Leu
Glu	Pro	Phe 35	Arg	Arg	Pro	Lys	Pro 40	Asp	Gly	Ala	Thr	Thr 45	Cya	Gln	Tyr
Leu	Leu 50	Gln	Gly	Leu	Arg	Leu 55	Leu	Tyr	Ser	His	His 60	Leu	Arg	Gln	Thr
Gly 65	Ser	Phe	Leu	Pro	Pro 70	Pro	Glu	Ser	Ala	Ala 75	Ser	Сув	Trp	Ala	Ala 80
Leu	Gln	Ser	Ser	Val 85	Ala	Gly	Phe	Leu	Pro 90	Arg	Phe	Asp	Val	Arg 95	Ser
Thr	Cya	Gly	Phe 100	Gln	Thr	Pro	Trp	Ile 105	Ser	Gln	Gly	CÀa	Met 110	Asp	Ile
Thr	Thr	Arg 115	Ser	Gln	Phe	Glu	Ser 120	Leu	Ile	Pro	Asn	Ser 125	Ser	Leu	Ala
Thr	Thr 130	Ala	Met	Arg	Cya	Asn 135	Thr	Ser	Leu	Glu	Ser 140	Asn	Thr	Pro	СЛа
Ala 145	Ser	Cys	Thr	Gln	Ser 150	Leu	Ser	Ala	Phe	Gln 155	Pro	Tyr	Leu	Ser	Gly 160

Pro	Ser	Leu	Gly	Asn 165	Val	Ser	Asp	Cys	Ala 170	Ser	Phe	Pro	Ser	Ile 175	Tyr
Ala	Ala	Ala	Phe 180	Ala	Asn	Ser	Leu	Gly 185	Pro	Thr	Asp	Lys	Gly 190	Thr	Ala
Lys	Cys	Leu 195	Phe	Gln	Leu	Asp	Leu 200	Ala	Ser	Pro	Thr	Ser 205	Ser	Gly	Ala
Asn	Lys 210	Val	Lys	Val	Leu	Val 215	Ser	Ser	Phe	Ser	Val 220	Leu	Leu	Val	Ala
Ser 225	Val	Leu	Val	Ile	Thr 230	Ala	Trp	Phe	Trp	Tyr 235	СЛа	Arg	Arg	Lys	Lys 240
Ser	Lys	Leu	Leu	Lys 245	Pro	Arg	Asp	Thr	Ser 250	Leu	Glu	Ala	Gly	Thr 255	Gln
Ser	Arg	Leu	Asp 260	Ser	Met	Ser	Glu	Ser 265	Thr	Thr	Leu	Val	Lys 270	Phe	Ser
Phe	Asp	Glu 275	Ile	Lys	Lys	Ala	Thr 280	Asn	Asn	Phe	Ser	Arg 285	His	Asn	Ile
Ile	Gly 290	Arg	Gly	Gly	Tyr	Gly 295	Asn	Val	Phe	Lys	Gly 300	Ala	Leu	Pro	Asp
Gly 305	Thr	Gln	Val	Ala	Phe 310	ГÀа	Arg	Phe	ГЛа	Asn 315	CÀa	Ser	Ala	Gly	Gly 320
Asp	Ala	Asn	Phe	Ala 325	His	Glu	Val	Glu	Val 330	Ile	Ala	Ser	Ile	Arg 335	His
Val	Asn	Leu	Leu 340	Ala	Leu	Arg	Gly	Tyr 345	Сув	Thr	Ala	Thr	Thr 350	Pro	Tyr
Glu	Gly	His 355	Gln	Arg	Ile	Ile	Val 360	Cys	Asp	Leu	Val	Ser 365	Asn	Gly	Ser
Leu	His 370	Asp	His	Leu	Phe	Gly 375	Asp	Leu	Glu	Ala	Gln 380	Leu	Ala	Trp	Pro
Leu 385	Arg	Gln	Arg	Ile	Ala 390	Leu	Gly	Met	Ala	Arg 395	Gly	Leu	Ala	Tyr	Leu 400
His	Tyr	Gly	Ala	Gln 405	Pro	Ser	Ile	Ile	His 410	Arg	Asp	Ile	Lys	Ala 415	Ser
Asn	Ile	Leu	Leu 420	Asp	Glu	Arg	Phe	Glu 425	Ala	Lys	Val	Ala	Asp 430	Phe	Gly
Leu	Ala	Lys 435	Phe	Asn	Pro	Glu	Gly 440	Met	Thr	His	Met	Ser 445	Thr	Arg	Val
Ala	Gly 450	Thr	Met	Gly	Tyr	Val 455	Ala	Pro	Glu	Tyr	Ala 460	Leu	Tyr	Gly	Gln
Leu 465	Thr	Glu	ГÀв	Ser	Asp 470	Val	Tyr	Ser	Phe	Gly 475	Val	Val	Leu	Leu	Glu 480
Leu	Leu	Ser	Arg	Arg 485	Lys	Ala	Ile	Val	Thr 490	Asp	Glu	Glu	Gly	Gln 495	Pro
Val	Ser	Val	Ala 500	Asp	Trp	Ala	Trp	Ser 505	Leu	Val	Arg	Glu	Gly 510	Gln	Thr
Leu	Asp	Val 515	Val	Glu	Asp	Gly	Met 520	Pro	Glu	Lys	Gly	Pro 525	Pro	Glu	Val
Leu	Glu 530	Lys	Tyr	Val	Leu	Ile 535	Ala	Val	Leu	СЛа	Ser 540	His	Pro	Gln	Leu
His 545	Ala	Arg	Pro	Thr	Met 550	Asp	Gln	Val	Val	Lув 555	Met	Leu	Glu	Ser	Asn 560
Glu	Phe	Thr	Val	Ile 565	Ala	Ile	Pro	Gln	Arg 570	Pro	Ile	Pro	Leu	Val 575	Ala
Cys	Arg	Glu	Glu	Ile	Asp	Arg	Ser	Val	Ser	Ser	Ser	Ser	Gly	Ser	Gly

											-	con	tin	ıed	
			580					585					590		
rys	Leu	Thr 595	Ser	Pro	Thr	Gly	Tyr 600	Gln	Ala	Phe	Ser	Phe 605	Gly	Gly	Asp
Gly	Pro 610	Ser	Gly	Asn	Thr	Asn 615	Thr	Thr							
<211 <212 <213	L> LE 2> T? 3> OF	EQ II ENGTH (PE: RGANI EATUR	H: 30 PRT ISM:	69	oidop	psis	tha:	Liana	a						
	3 > 07	THER	INF	ORMA' r Cy:		: pro	oteir	n kir	nase	-like	e pro	otei	n, k:	inase	e with
< 400)> SI	EQUE	ICE :	27											
Met 1	Ala	His	Ile	Ser 5	Asp	Ile	Lys	Leu	Ile 10	Arg	Thr	Asp	Thr	Thr 15	Leu
Asp	Leu	Ser	Gln 20	ГÀв	Ala	Glu	Lys	Gly 25	Met	Ile	Trp	Thr	Met 30	Gly	Gly
Ala	Ser	Tyr 35	Leu	Tyr	Tyr	Asn	Ala 40	Tyr	Asp	His	Gly	Ser 45	Leu	Thr	Cya
Arg	Сув 50	Gly	Thr	Leu	Leu	Ile 55	Ala	Ser	Ser	Gly	Gly 60	ГÀа	Tyr	Asn	Pro
Ile 65	Arg	Thr	Phe	Ser	Ser 70	His	Gln	Ile	Leu	Glu 75	Ala	Thr	Asn	Asn	Phe 80
Asp	Trp	Ser	Tyr	Ala 85	Ile	Gly	Val	Asp	Arg 90	Phe	Val	Trp	Tyr	95 Lys	Gly
Thr	Ile	Glu	Asn 100	Arg	Ala	Val	Leu	Ile 105	ГÀа	Tyr	Tyr	ГÀа	Gly 110	Glu	Pro
Phe	Asn	Phe 115	Asp	Pro	Asp	Asn	Phe 120	Tyr	Arg	Asp	Ile	Ala 125	Val	Ser	Ser
Met	Met 130	Ser	Ser	His	Lys	Asn 135	Val	Leu	Lys	Leu	Leu 140	Gly	СЛа	Càa	Leu
Glu 145	Phe	Pro	Arg	Pro	Val 150	Leu	Val	Сла	Glu	Tyr 155	Pro	Glu	Lys	Gly	Ala 160
Leu	Ala	Tyr	Ile	Gly 165	Gly	Ala	Gly	Glu	Val 170	Ile	Lys	Pro	Leu	Ala 175	Trp
Ser	Val	Arg	Leu 180	Lys	Ile	Ala	Lys	Glu 185	Ile	Ala	Asp	Ala	Val 190	Thr	Tyr
Leu	His	Thr 195	Glu	Phe	Pro	Arg	Thr 200	Ile	Ile	His	Arg	Asp 205	Leu	Lys	Leu
Thr	Asn 210	Ile	Phe	Leu	Asp	Glu 215	Asn	Trp	Thr	Ala	Lys 220	Leu	Ser	Ser	Phe
Ser 225	Leu	Ser	Ile	Pro	Ile 230	Pro	Glu	Gly	Glu	Leu 235	Gly	Val	Glu	Aap	Ile 240
Val	Cys	Gly	Thr	Gln 245	Gly	Phe	Gly	Glu	Pro 250	His	Tyr	Met	Val	Thr 255	Gly
Phe	Val	Thr	Glu 260	Asn	Val	Asp	Ile	Tyr 265	Ser	Phe	Gly	Phe	Ile 270	Met	Leu
Ser	Leu	Leu 275	Thr	Gly	Lys	His	Gly 280	Phe	Tyr	Gln	Glu	Pro 285	Ala	Asn	Gly
Asp	Ser 290	Tyr	Asn	Met	Ile	Leu 295	Leu	Pro	Asp	Tyr	Val 300	Glu	Lys	Сув	Leu
Gly 305	Arg	Gly	Pro	Leu	Ala 310	Lys	Leu	Ile	Asp	Pro 315	Ser	Met	Leu	Asn	Ser 320

-continued

Thr Asp Asp Asp Ile Pro Asp His Ser Lys Leu Gln Met Glu Ala Phe 325 Val Asn Leu Ala Leu Arg Cys Val Gly Phe Arg Ser Gly Glu Thr Lys Leu His Met Ile Asp Val Ala Lys Glu Leu Lys Arg Ile Gln Lys Gln Thr <210> SEQ ID NO 28 <211> LENGTH: 372 <212> TYPE: PRT <213> ORGANISM: Arabidopsis thaliana <223> OTHER INFORMATION: putative kinase-like protein, kinase with gatekeeper Cys <400> SEQUENCE: 28 Met Asp Lys Ile Ile Ile Ser Asn Leu Ser Glu Phe Asp His Ser Val 10 Val Asp Tyr His Lys Ser Ser Leu Leu Leu Cys Lys Ser Gln Ser Phe 25 Glu Leu Ser Pro Ile Glu Met Ser Lys Asn Asn Lys Lys Lys Arg Arg 40 Trp Asp Leu Lys Asn Gly Gly Ile Leu Leu Glu Glu Leu Ile Ala Ser Phe Asp Gly Lys Thr Asn Pro Ile Arg Cys Phe Ser Ser Asp Gln Ile Leu Lys Ala Thr Asp Asn Phe Ser Glu Ser Arg Ile Ile Ser Ser Trp Gly Tyr Phe Ile Trp Tyr Lys Gly Val Ile Glu Glu Arg Gln Val Ser Ile Lys Lys Trp Ser Ser Gln Asn Leu Ser Ser Phe Thr Glu Ala Tyr 120 Arg Asp Ile Ser Val Ser Ser Gln Met Ser Gly His Lys Asn Ala Leu 135 Lys Leu Ile Gly Cys Cys Leu Glu Phe Asp Leu Pro Ala Leu Val Cys Glu Tyr Thr Glu His Gly Pro Leu Asn Arg Asp Gly Gly Leu Ser Ser Gly Val Val Leu Pro Trp Lys Val Arg Leu Lys Ile Ala Lys Glu Ile Ala Ser Ser Val Thr Tyr Leu His Thr Ala Phe Pro Glu Thr Ile Val His Arg Asn Ile Asn Pro Thr Asn Ile Phe Ile Asp Glu Asn Trp Thr Ala Lys Leu Ser Asp Phe Trp Phe Cys Val Ala Ile Pro Glu Gly Glu 230 235 Leu Tyr Val Glu Asp Asp Val Lys Gly Val Ile Gly Phe Val Asp Pro Asp Tyr Tyr Trp Thr Met Lys Val Thr Glu Lys Val Asp Ile Tyr Ser Phe Gly Val Val Met Leu Val Leu Leu Ser Gly Arg Ala Ala Val Phe 280 Asn Gly Pro Asp Glu Ala Pro Met Ser Leu Asn Asp His Val Ser Glu 295

-continued

Val Met Glu Lys Gly Glu Phe Asp Glu Ile Val Asp Lys Glu Ile Trp 310 315 Asn Asp Leu Gly Gly Asp Asp Leu Val Leu Arg Arg Ser Gln Val Lys Ala Phe Leu Arg Leu Ala Leu Arg Cys Val Arg Tyr Lys Lys Glu 345 Asp Pro Val Ser Gly Met Leu Glu Val Ala Lys Glu Leu Lys Leu Ile 360 Glu Lys Leu Ser <210> SEQ ID NO 29 <211> LENGTH: 357 <212> TYPE: PRT <213 > ORGANISM: Arabidopsis thaliana <220> FEATURE: <223> OTHER INFORMATION: putative kinase-like protein, kinase with gatekeeper Cys <400> SEQUENCE: 29 Met Ser Cys Trp Arg Lys Lys Ser Lys Lys Lys As
n Ser Glu Ala As
n 1 5 10 15 10 Gln Arg Gln Arg Trp Phe Gln Glu Asn Gly Lys Val Leu Leu Glu Asp Leu Ile Glu Leu Cys Asn Gly Lys Ser Asn Pro Ile Lys Thr Phe Ser Ala Glu Glu Ile Leu Gln Ala Thr Asp Asn Phe Ser Glu Ser Asn Leu Val Ile Arg Phe Asn Phe Met Tyr Arg Gly Ile Leu Gln Asn Arg Pro Val Leu Ile Lys Arg Ala Thr Trp Asn Tyr Tyr Lys Ser Asp Thr Leu Glu Lys Ile Cys Arg Asp Ile Ala Val Ser Ser Met Val Ser Gly His Lys Asn Phe Leu Lys Leu Leu Gly Cys Cys Leu Glu Phe Glu His Pro 120 Val Leu Val Cys Glu Tyr Ala Glu Arg Ile Pro Phe Asn Thr Pro Asn 135 Pro Glu Met Leu Leu Pro Trp Arg Met Arg Ile Lys Ile Ala Lys Glu Ile Ala Ile Ala Val Ser Tyr Leu His Thr Ala Leu Ser Arg Thr Met Ile His Thr Asp Ile Gln Pro Phe Asn Ile Phe Val Asp Ser Asn Gly Thr Ala Lys Leu Ser Asp Phe Cys Leu Cys Ile Ala Ile Pro Glu Gly Glu Thr Phe Val Lys Val His Ala Asp Arg Val Glu Gly Thr Leu Asp 215 Tyr Leu Glu Tyr Asn Tyr Ala Ala Thr Gly Leu Ile Thr Glu Tyr Thr 235 230 Asp Val Phe Ser Phe Gly Val Leu Leu Gln Asn Phe Phe Thr Arg Thr 250 Tyr Gly Val Val Asp Cys Cys Cys Ser Glu Asp Glu Ser Leu Phe Glu 265 Glu Phe Glu Asp Lys Gln Asn Val Met Asn Leu Arg Ile Ser Asp Arg 280

Ile Ser Lys Phe Val Glu Glu Gly Arg Ile Phe Asp Met Leu Asp Pro 295 Lys Met Leu Glu Ser Met Gly Asp Asp Glu Thr Glu Glu His Lys Ile 310 Arg Arg Met Lys Ala Val Leu Met Leu Ser Leu Arg Cys Thr Gly His Arg Gly Asp Val Pro Lys Met Met Glu Val Ala Lys Glu Leu Lys Arg Ile Glu Arg Trp Thr <210> SEQ ID NO 30 <211> LENGTH: 340 <212> TYPE: PRT <213 > ORGANISM: Arabidopsis thaliana <220> FEATURE: <223> OTHER INFORMATION: protein kinase-like protein, kinase with gatekeeper Cys <400> SEQUENCE: 30 Met Leu Arg Leu Phe Arg Lys Lys Lys Gln Lys Lys Glu Glu Glu Ile Asn Leu Gln Lys Asn Gly Ser Leu Leu Leu Glu Glu Leu Ile Ala 25 Thr Ser Gly Gly Ile Tyr Asn Pro Ile Arg Thr Phe Ser Ser Asp Gln 40 Ile Leu Gln Ala Thr Asn His Phe Asp Trp Asn Tyr Val Ile Ser Glu Asp Arg Phe Val Trp Tyr Lys Gly Met Ile Glu Asn Arg Pro Val Leu Ile Lys Lys Phe Gln Asp Cys Ser Val Phe Asp Ala Asp Asn Phe Tyr 90 Arg Asp Ile Ala Val Ser Ser Leu Met Ser Ser His Lys Asn Val Leu 105 Lys Leu Leu Gly Cys Cys Leu Glu Phe Pro Arg Pro Val Leu Val Cys Glu Tyr Pro Glu His Gly Ala Leu Asn Cys Ile Arg Cys Gly Lys Glu 135 Gly Val Arg Ser Phe Pro Trp Asn Val Arg Leu Arg Ile Ala Lys Glu Ile Ala Asp Ala Val Ala Tyr Leu His Thr Glu Phe Pro Arg Thr Ile Ile His Arg Asp Leu Lys Leu Ala Asn Ile Phe Leu Asp Glu Asn Trp Ser Ala Lys Leu Ser Ser Phe Ser Leu Ser Ile Val Leu Pro Glu Gly Glu Thr Gly Val Asn Asp Met Val Cys Arg Thr Ser Ser Tyr Ile Glu 215 Pro Asp Tyr Phe Asn Thr Gly Leu Val Thr Glu Asn Val Asp Ile Tyr 230 235 Ser Leu Gly Ile Ile Met Leu Ile Ile Leu Thr Gly Lys Ser Glu Tyr Asn Ser Glu Val Ala Val Tyr Leu Pro Val Leu Pro Val Tyr Val Gly Lys Phe Leu Glu Arg Gly Leu Leu Thr Glu Leu Ile Asp Pro Ser Ile

												COII	CIII	aca	
		275					280					285			
Leu	Asp 290	Ser	Thr	Ser	Asp	Asp 295	Ile	Pro	Lys	His	Ser 300	Arg	Leu	Gln	Met
Glu 305	Ala	Phe	Ile	Glu	Leu 310	Ala	Phe	Arg	Cys	Val 315	Arg	Phe	Arg	Pro	Gly 320
Glu	Asn	Val	Pro	Arg 325	Met	Ile	Asp	Val	Ala 330	Lys	Glu	Leu	Lys	Lys 335	Ile
Glu	Lys	His	Ile 340												
<211 <212 <213 <220	L> LI 2> T: 3> OI 0> FI 3> O:	EATUI CHER	H: 3! PRT ISM: RE: INFO	51 Aral						e-lil	ke pi	rote:	in, 1	kinas	se with
< 400)> SI	EQUE	ICE:	31											
Met 1	Lys	Gly	Phe	Phe 5	ГÀа	Thr	Glu	Ser	Glu 10	Thr	Arg	ГЛа	His	Ser 15	Asp
Lys	Asn	Gly	Ser 20	Leu	Leu	His	Glu	Glu 25	Leu	Ile	Ala	Cys	Ser 30	Aap	Gly
Lys	Tyr	Asn 35	Pro	Ile	Arg	Met	Phe 40	Ser	Ser	Asp	Gln	Ile 45	Leu	Lys	Ala
Thr	Asn 50	Asn	Phe	Asp	Ala	Asp 55	His	Ile	Ile	Ala	60	Asp	Arg	Phe	Ile
Trp 65	Tyr	Lys	Gly	Thr	Ile 70	Glu	Glu	Arg	Arg	Val 75	Leu	Ile	Lys	ГЛа	Trp 80
Glu	Gly	Asp	Tyr	Val 85	Leu	Phe	Ser	Ser	Pro 90	Glu	Asn	Val	Tyr	Arg 95	Asp
Ile	Ala	Val	Leu 100	Ser	Met	Met	Ser	Ser 105	His	Lys	Asn	Val	Leu 110	ГЛа	Leu
Leu	Gly	Cys 115	Сув	Val	Glu	Phe	Tyr 120	Lys	Pro	Val	Leu	Val 125	Сув	Glu	Leu
Ala	Glu 130	Lys	Gly	Pro	Leu	Lys 135	Leu	Glu	Asp	Met	Asp 140	Gly	Thr	Pro	Leu
Pro 145	Trp	Ser	Ala	Arg	Leu 150	ГÀа	Ile	Gly	Lys	Asp 155	Ile	Ala	Asn	Ala	Val 160
Ala	Tyr	Leu	His	Thr 165	Ala	Phe	Pro	Arg	Val 170	Ile	Ile	Asn	Arg	Asp 175	Val
Arg	Pro	Gln	Asn 180	Ile	Phe	Leu	Asp	Glu 185	Asp	Gly	Thr	Ala	Lys 190	Leu	Ser
Ser	Phe	Сув 195	Leu	Arg	Ile	Ser	Ile 200	Pro	Glu	Gly	Glu	Ser 205	Ser	Val	Tyr
Asp	Asp 210	Lys	Val	Val	Tyr	Gly 215	Val	Ser	Val	Asp	Pro 220	Glu	Tyr	Asn	Gly
Thr 225	Gly	Leu	Val	Ser	Glu 230	Lys	Phe	Asp	Val	Tyr 235	Ser	Phe	Gly	Val	Thr 240
Met	Leu	Phe	Leu	Leu 245	Gly	Gly	Glu	Leu	Gly 250	Leu	Thr	Trp	Leu	Ser 255	Ala
Ile	Ile	Gly	Glu 260	Phe	Gly	Phe	Pro	Phe 265	Pro	Gly	СЛа	Gly	Glu 270	Glu	Leu
Ala	Asp	Gln 275	Phe	Met	Tyr	Val	Ile 280	Asp	Ser	Asn	Ile	Trp 285	Asn	Gly	Glu

-continued

Ser Glu Ala Ser Ala Val Gln Val Glu Thr Phe Phe Gly Leu Ala Leu 290 295 Arg Cys Ile Arg Phe Trp Pro Gly Gln Asp Val Leu Thr Met Ile Asp Val Ala Lys Glu Leu Lys Gly Ile Glu Glu Leu Phe Lys Ala Ser Ser 330 Ser Glu Gln Asp Lys Glu Gln Ile Asp Gln Val Asn Tyr Ser Val <210> SEQ ID NO 32 <211> LENGTH: 690 <212> TYPE: PRT <213> ORGANISM: Arabidopsis thaliana <220> FEATURE: <223> OTHER INFORMATION: similar to eukaryotic protein kinase domains, kinase with gatekeeper Cys <400> SEQUENCE: 32 Met Leu Leu Met Gln Ser Leu Leu Phe Thr Ile His Leu Ser Phe Leu Phe Ser Leu Leu Cys Gln Ser Asn Cys Ser Cys Lys His His Ile Val Pro Phe Ser Lys Val Ser Gln Glu Asp Ala Pro His Ala Ser His Ala 40 Gly Ala Tyr Pro Gln Arg Ile Gln Arg His Gly Thr Thr Asn Ser Glu Ala Ile Leu Lys Phe Lys Glu Ser Leu Val Val Gly Gln Glu Asn Ala Leu Ala Ser Trp Asn Ala Lys Ser Pro Pro Cys Thr Trp Ser Gly Val 90 Leu Cys Asn Gly Gly Ser Val Trp Arg Leu Gln Met Glu Asn Leu Glu 105 Leu Ser Gly Ser Ile Asp Ile Glu Ala Leu Ser Gly Leu Thr Ser Leu Arg Thr Leu Ser Phe Met Asn Asn Lys Phe Glu Gly Pro Phe Pro Asp 135 Phe Lys Lys Leu Ala Ala Leu Lys Ser Leu Tyr Leu Ser Asn Asn Gln Phe Gly Gly Asp Ile Pro Gly Asp Ala Phe Glu Gly Met Gly Trp Leu Lys Lys Val His Leu Ala Gln Asn Lys Phe Thr Gly Gln Ile Pro Ser Ser Val Ala Lys Leu Pro Lys Leu Leu Glu Leu Arg Leu Asp Gly Asn Gln Phe Thr Gly Glu Ile Pro Glu Phe Glu His Gln Leu His Leu Leu 215 Asn Leu Ser Asn Asn Ala Leu Thr Gly Pro Ile Pro Glu Ser Leu Ser Met Thr Asp Pro Lys Val Phe Glu Gly Asn Lys Gly Leu Tyr Gly Lys 250 Pro Leu Glu Thr Glu Cys Asp Ser Pro Tyr Ile Glu His Pro Pro Gln Ser Glu Ala Arg Pro Lys Ser Ser Ser Arg Gly Pro Leu Val Ile Thr 280 Ala Ile Val Ala Ala Leu Thr Ile Leu Ile Ile Leu Gly Val Ile Phe 295

_															
Leu 305	Leu	Asn	Arg	Ser	Tyr 310	Lys	Asn	ГЛа	Lys	Pro 315	Arg	Leu	Ala	Val	Glu 320
Thr	Gly	Pro	Ser	Ser 325	Leu	Gln	Lys	ГÀв	Thr 330	Gly	Ile	Arg	Glu	Ala 335	Asp
Gln	Ser	Arg	Arg 340	Asp	Arg	ГÀв	Lys	Ala 345	Asp	His	Arg	Lys	Gly 350	Ser	Gly
Thr	Thr	Lys 355	Arg	Met	Gly	Ala	Ala 360	Ala	Gly	Val	Glu	Asn 365	Thr	Lys	Leu
Ser	Phe 370	Leu	Arg	Glu	Asp	Arg 375	Glu	Lys	Phe	Asp	Leu 380	Gln	Asp	Leu	Leu
Lys 385	Ala	Ser	Ala	Glu	Ile 390	Leu	Gly	Ser	Gly	Сув 395	Phe	Gly	Ala	Ser	Tyr 400
Lys	Ala	Val	Leu	Ser 405	Ser	Gly	Gln	Met	Met 410	Val	Val	Lys	Arg	Phe 415	Lys
Gln	Met	Asn	Asn 420	Ala	Gly	Arg	Asp	Glu 425	Phe	Gln	Glu	His	Met 430	ГÀа	Arg
Leu	Gly	Arg 435	Leu	Met	His	His	Asn 440	Leu	Leu	Ser	Ile	Val 445	Ala	Tyr	Tyr
Tyr	Arg 450	Lys	Glu	Glu	ГÀа	Leu 455	Leu	Val	CAa	Asp	Phe 460	Ala	Glu	Arg	Gly
Ser 465	Leu	Ala	Ile	Asn	Leu 470	His	Ser	Asn	Gln	Ser 475	Leu	Gly	ГЛа	Pro	Ser 480
Leu	Asp	Trp	Pro	Thr 485	Arg	Leu	Lys	Ile	Val 490	Lys	Gly	Val	Ala	Lys 495	Gly
Leu	Phe	Tyr	Leu 500	His	Gln	Asp	Leu	Pro 505	Ser	Leu	Met	Ala	Pro 510	His	Gly
His	Leu	Lys 515	Ser	Ser	Asn	Val	Leu 520	Leu	Thr	Lys	Thr	Phe 525	Glu	Pro	Leu
Leu	Thr 530	Asp	Tyr	Gly	Leu	Ile 535	Pro	Leu	Ile	Asn	Gln 540	Glu	Lys	Ala	Gln
Met 545	His	Met	Ala	Ala	Tyr 550	Arg	Ser	Pro	Glu	Tyr 555	Leu	Gln	His	Arg	Arg 560
Ile	Thr	Lys	Lys	Thr 565	Asp	Val	Trp	Gly	Leu 570	Gly	Ile	Leu	Ile	Leu 575	Glu
Ile	Leu	Thr	Gly 580	Lys	Phe	Pro	Ala	Asn 585	Phe	Ser	Gln	Ser	Ser 590	Glu	Glu
Asp	Leu	Ala 595	Ser	Trp	Val	Asn	Ser 600	Gly	Phe	His	Gly	Val 605	Trp	Ala	Pro
Ser	Leu 610	Phe	Asp	Lys	Gly	Met 615	Gly	Lys	Thr	Ser	His 620	CÀa	Glu	Gly	Gln
Ile 625	Leu	Lys	Leu	Leu	Thr 630	Ile	Gly	Leu	Asn	Сув 635	CAa	Glu	Pro	Asp	Val 640
Glu	Lys	Arg	Leu	Asp 645	Ile	Gly	Gln	Ala	Val 650	Glu	ГÀв	Ile	Glu	Glu 655	Leu
ГЛа	Glu	Arg	Glu 660	Gly	Asp	Asp	Asp	Asp 665	Phe	Tyr	Ser	Thr	Tyr 670	Val	Ser
Glu	Thr	Asp 675	Gly	Arg	Ser	Ser	Lys	Gly	Glu	Ser	Cys	Glu 685	Ser	Ile	Ser
Phe	Ala 690														

-continued

_															
		YPE:		Aral	ni dor	naia	tha"	lians							
		EATU		ALAI	JIGO	SETE	tiia.	LIAII	1						
<223															like
				kina:							or and	= bro	JUETI	1 1/11	nase-like
-400) .	EQUEI	ICE ·	33											
Met 1	Pro	Pro	Met	Gln 5	Ala	Arg	Thr	Leu	Ser 10	Val	Tyr	Asn	Val	Met 15	Val
Pro	Leu	Val	Cys 20	Leu	Leu	Leu	Phe	Phe 25	Ser	Thr	Pro	Thr	His 30	Gly	Leu
Ser	Asp	Ser 35	Glu	Ala	Ile	Leu	Lys 40	Phe	Lys	Glu	Ser	Leu 45	Val	Val	Gly
Gln	Glu 50	Asn	Ala	Leu	Ala	Ser 55	Trp	Asn	Ala	Lys	Ser 60	Pro	Pro	Cys	Thr
Trp 65	Ser	Gly	Val	Leu	Сув 70	Asn	Gly	Gly	Ser	Val 75	Trp	Arg	Leu	Gln	Met 80
Glu	Asn	Leu	Glu	Leu 85	Ser	Gly	Ser	Ile	Asp 90	Ile	Glu	Ala	Leu	Ser 95	Gly
Leu	Thr	Ser	Leu 100	Arg	Thr	Leu	Ser	Phe 105	Met	Asn	Asn	Lys	Phe 110	Glu	Gly
Pro	Phe	Pro 115	Asp	Phe	ГÀа	Lys	Leu 120	Ala	Ala	Leu	Lys	Ser 125	Leu	Tyr	Leu
Ser	Asn 130	Asn	Gln	Phe	Gly	Gly 135	Asp	Ile	Pro	Gly	Asp 140	Ala	Phe	Glu	Gly
Met 145	Gly	Trp	Leu	rys	Lys 150	Val	His	Leu	Ala	Gln 155	Asn	ГÀв	Phe	Thr	Gly 160
Gln	Ile	Pro	Ser	Ser 165	Val	Ala	Lys	Leu	Pro 170	Lys	Leu	Leu	Glu	Leu 175	Arg
Leu	Asp	Gly	Asn 180	Gln	Phe	Thr	Gly	Glu 185	Ile	Pro	Glu	Phe	Glu 190	His	Gln
Leu	His	Leu 195	Leu	Asn	Leu	Ser	Asn 200	Asn	Ala	Leu	Thr	Gly 205	Pro	Ile	Pro
Glu	Ser 210	Leu	Ser	Met	Thr	Asp 215	Pro	Lys	Val	Phe	Glu 220	Gly	Asn	Lys	Gly
Leu 225	Tyr	Gly	Lys	Pro	Leu 230	Glu	Thr	Glu	Сув	Asp 235	Ser	Pro	Tyr	Ile	Glu 240
His	Pro	Pro	Gln	Ser 245	Glu	Ala	Arg	Pro	Lys 250	Ser	Ser	Ser	Arg	Gly 255	Pro
Leu	Val	Ile	Thr 260	Ala	Ile	Val	Ala	Ala 265	Leu	Thr	Ile	Leu	Ile 270	Ile	Leu
Gly	Val	Ile 275	Phe	Leu	Leu	Asn	Arg 280	Ser	Tyr	Lys	Asn	Lys 285	Lys	Pro	Arg
Leu	Ala 290	Val	Glu	Thr	Gly	Pro 295	Ser	Ser	Leu	Gln	Tys	Lys	Thr	Gly	Ile
Arg 305	Glu	Ala	Asp	Gln	Ser 310	Arg	Arg	Asp	Arg	Lys 315	Lys	Ala	Asp	His	Arg 320
ГÀа	Gly	Ser	Gly	Thr 325	Thr	Lys	Arg	Met	Gly 330	Ala	Ala	Ala	Gly	Val 335	Glu
Asn	Thr	Lys	Leu 340	Ser	Phe	Leu	Arg	Glu 345	Asp	Arg	Glu	Lys	Phe 350	Asp	Leu
Gln	Asp	Leu 355	Leu	Lys	Ala	Ser	Ala 360	Glu	Ile	Leu	Gly	Ser 365	Gly	Cys	Phe

Gly Ala Ser Tyr Lys Ala Val Leu Ser Ser Gly Gln Met Met Val Val

													CIII		
	370					375					380				
Lys 385	Arg	Phe	Lys	Gln	Met 390	Asn	Asn	Ala	Gly	Arg 395		Glu	Phe	Gln	Glu 400
His	Met	Lys	Arg	Leu 405	•	Arg	Leu	Met	His 410	His	Asn	Leu	Leu	Ser 415	Ile
Val	Ala	Tyr	Tyr 420		Arg	ГÀз	Glu	Glu 425		Leu	Leu	Val	Cys 430	Asp	Phe
Ala	Glu	Arg 435		Ser	Leu	Ala	Ile 440		Leu	His	Ser	Asn 445	Gln	Ser	Leu
Gly	Lys 450	Pro	Ser	Leu	Asp	Trp 455	Pro	Thr	Arg	Leu	Lys 460	Ile	Val	Lys	Gly
Val 465	Ala	Lys	Gly	Leu	Phe 470		Leu	His	Gln	Asp 475	Leu	Pro	Ser	Leu	Met 480
Ala	Pro	His	Gly	His 485	Leu	Lys	Ser	Ser	Asn 490	Val	Leu	Leu	Thr	Lys 495	
Phe	Glu	Pro	Leu 500	Leu	Thr	Asp	Tyr	Gly 505		Ile	Pro	Leu	Ile 510	Asn	Gln
Glu	ГЛа	Ala 515	Gln	Met	His	Met	Ala 520	Ala	Tyr	Arg	Ser	Pro 525	Glu	Tyr	Leu
Gln	His 530	Arg	Arg	Ile	Thr	535	Lys	Thr	Asp	Val	Trp 540	Gly	Leu	Gly	Ile
Leu 545	Ile	Leu	Glu	Ile	Leu 550	Thr	Gly	Lys	Phe	Pro 555	Ala	Asn	Phe	Ser	Gln 560
Ser	Ser	Glu	Glu	Asp 565	Leu	Ala	Ser	Trp	Val 570	Asn	Ser	Gly	Phe	His 575	Gly
Val	Trp	Ala	Pro 580	Ser	Leu	Phe	Asp	Lys 585	Gly	Met	Gly	Lys	Thr 590	Ser	His
Cya	Glu	Gly 595	Gln	Ile	Leu	Lys	Leu 600		Thr	Ile	Gly	Leu 605	Asn	CÀa	Cys
Glu	Pro 610	Asp	Val	Glu	Lys	Arg 615	Leu	Asp	Ile	Gly	Gln 620	Ala	Val	Glu	Lys
Ile 625	Glu	Glu	Leu	ГЛа	Glu 630		Glu	Gly	Asp	Asp 635		Asp	Phe	Tyr	Ser 640
Thr	Tyr	Val	Ser	Glu 645	Thr	Asp	Gly	Arg	Ser 650	Ser	ГÀа	Gly	Glu	Ser 655	Сув
Glu	Ser	Ile	660	Phe	Ala										
<21: <21: <21: <22:		ENGTI (PE : RGAN: EATUI THER	H: 12 PRT ISM: RE: INFO	266 Aral	rion	: Sei				n kii	nase	-lik	e pro	otein	n, kinase
< 40	0> SI	EQUEI	ICE :	34											
Met 1	Ile	Phe	His	Gly 5	Ser	Lys	Ala	Val	Lys 10	Glu	Ala	Gln	Ser	Trp 15	Gln
Glu	Ala	Gln	Phe 20	Glu	Leu	His	Ser	Glu 25	Ser	His	Gly	Ser	Leu 30	Ser	Ile
Asp	Asn	Arg 35	Ile	Arg	Val	Arg	Asp 40	Val	Ser	Gln	Asp	Thr 45	Thr	Phe	Ser
Gly	Tyr 50	Arg	Сув	Phe	Ile	Asp 55	Gly	Ser	Trp	Lys	Ala 60	Ser	Asp	Gln	Phe

Ser 65	Gly	Thr	Gly	Trp	Phe 70	CAa	Leu	Ser	Ser	Leu 75	Gly	Glu	Ser	Pro	Thr 80
Met	Gly	Ala	Val	Asn 85	Val	Arg	Arg	Ser	Leu 90	Ser	Pro	Leu	His	Thr 95	Glu
Met	Glu	Ala	Leu 100	Leu	Trp	Ala	Met	Lys 105	CAa	Met	Ile	Gly	Ala 110	Asp	Asn
Gln	Asn	Val 115	Ala	Phe	Phe	Thr	Asp 120	Cys	Ser	Cys	His	Arg 125	Phe	Gly	Glu
Met	Glu 130	Asp	Ser	Ser	Ser	Ile 135	Asp	Ser	Ile	Leu	Glu 140	Phe	Leu	Arg	Lys
Asn 145	His	Phe	Met	Arg	Ala 150	Glu	Ala	Ala	Leu	Ile 155	Ser	Glu	Leu	Ser	Lys 160
ГÀа	Pro	Ser	Ser	Asn 165	Gly	Ser	Leu	Gln	Lys 170	Leu	Asn	Phe	Glu	Asp 175	Asn
CÀa	Val	Ser	180 180	Leu	Leu	Asp	Lys	Lys 185	ГЛа	Gln	Gly	Gly	Ser 190	Ser	Gln
Ala	Leu	Gly 195	Leu	His	Asn	Asp	Ser 200	His	Ile	Ser	Asp	Glu 205	Leu	Val	Val
ГÀа	Glu 210	Ile	Gln	CÀa	Gly	Ala 215	Ala	Asn	Asn	Leu	His 220	Glu	Ser	Asn	Leu
Met 225	Asn	Asp	Val	Ser	Val 230	Gln	Thr	Gln	Ser	Gly 235	Asn	Ala	Asp	Phe	Trp 240
Glu	Glu	Arg	Phe	Thr 245	Phe	Ala	Glu	Gly	Phe 250	Glu	Asp	Thr	Glu	Leu 255	Asp
Leu	Pro	Pro	Trp 260	Asn	His	Thr	Ser	Thr 265	Asp	Ile	Val	Ala	Asp 270	Ser	Glu
Glu	Tyr	Ser 275	Ile	Asn	Pro	Ser	Lys 280	Arg	Gly	Phe	Val	Asn 285	Pro	Arg	Ser
Ser	Lys 290	Gln	Ser	Ser	His	Glu 295	Lys	Val	Pro	Glu	Pro 300	Gly	Lys	Ser	Asn
305	Val	Val	Val	Glu	Asp 310	Val	Phe	Ser	Ser	Phe 315	Glu	ГÀа	Ile	Arg	Thr 320
Gly	Ser	Ser	Ser	Gln 325	Val	Ser	Gln	Tyr	330 330	His	Gly	Lys	Ala	Сув 335	Gln
Ser	Leu	Glu	Val 340	Asp	Asn	Lys	Val	Gly 345	Asn	Ser	Ala	Ile	Gln 350	Glu	Gly
Phe	Val	Thr 355	Thr	Ser	Trp	Ser	Arg 360		Glu	Glu		Ile 365	Gly	Ala	Ser
Pro	Asp 370	His	Trp	Lys	Asp	Сув 375	Ser	Val	Thr	Thr	Val 380	Phe	Pro	Leu	Ser
385 Lys	Gly	Ser	Thr	Ser	Thr 390	Lys	Asp	Asn	Gly	Val 395	Ala	Ile	Leu	Asp	Lys 400
Trp	Gln	Gly	Lys	Lys 405	Leu	Val	Gly	Ala	Ser 410	Asp	Ser	Arg	Ile	Leu 415	Ile
ГÀЗ	Glu	Gln	Glu 420	Asp	Asp	Val	Ala	Thr 425	Ala	Leu	Tyr	Leu	Gly 430	ГÀз	Ser
Gln	Ser	Gly 435	Tyr	Glu	His	Lys	Ile 440	Pro	Ser	Ser	Leu	Ala 445	Phe	Ser	Leu
Ala	His 450	Asp	Ala	Pro	Arg	Glu 455	Asp	Leu	Pro	Arg	Leu 460	Pro	His	Val	Lys
Ile 465	Lys	Ser	Glu	Asp	Lys 470	Leu	Met	Asn	Phe	Thr 475	Trp	Glu	Glu	Lys	His 480
Glu	Arg	Asp	Ile	Leu	Asp	Glu	Lys	Leu	Ile	Asn	Thr	Asp	Asn	Ala	Phe

				485					490					495	
Leu	Leu	Gly	Ser 500	Tyr	Leu	Asp	Val	Pro 505	Ile	Gly	Gln	Glu	Ile 510	Asn	Ser
Ser	Gly	Gly 515	Lys	Met	Ala	Gly	Gly 520	Gly	Asn	Trp	Leu	Ser 525	Val	Ser	His
Gly	Ile 530	Ala	Asp	Asp	Ala	Ser 535	Asp	Leu	Ile	Phe	Gly 540	Phe	Gly	Asp	Gly
Leu 545	Gly	Ala	Leu	Asn	Glu 550	His	Ser	Asn	Glu	Tyr 555	Trp	Asp	Ser	Asp	Glu 560
Tyr	Asp	Asp	Asp	Asp 565	Asp	Val	Gly	Tyr	Ile 570	Arg	Gln	Pro	Ile	Glu 575	Asp
Glu	Ala	Trp	Phe 580	Leu	Gly	His	Glu	Val 585	Asp	Tyr	Pro	Ser	Asp 590	Asn	Glu
Lys	Gly	Thr 595	Glu	His	Gly	Ser	Val 600	Pro	Asp	Thr	Gln	Asp 605	ГЛа	Ser	Gln
Thr	Lys 610	Asn	Asp	Asp	Asp	His 615	Ser	Phe	Ala	Glu	Glu 620	Asp	Ser	Tyr	Phe
Ser 625	Gly	Glu	Gln	Tyr	Val 630	Leu	Ala	Lys	Gly	Ile 635	Glu	Pro	Val	Thr	Ala 640
Ser	Asn	Asp	Pro	Met 645	Gly	Leu	Ser	Met	Thr 650	Glu	Thr	Tyr	Ser	Thr 655	Thr
ГÀв	Gln	Ala	Asp	Leu	Val	Ala	Arg	Tyr 665	Asp	Gly	Gln	Leu	Met 670	Aap	Ala
Glu	Glu	Leu 675	Ser	Leu	Met	Asp	Thr 680	Glu	Pro	Val	Trp	685 Lys	Gly	Phe	Val
Ser	His 690	Glu	Asn	Asp	Val	Ile 695	Leu	Leu	ГÀа	ГÀа	Gly 700	ГÀа	Val	Glu	Asp
Asn 705	Ser	Gly	Arg	Ile	Cys 710	Arg	ГÀз	Asp	Ile	Arg 715	Ala	Glu	Asp	Asp	Arg 720
Asn	Ala	Ala	Val	Arg 725	Ser	Ile	Gly	Val	Gly 730	Met	Ser	Asp	Asp	Val 735	Asp
Asp	Asn	Gly	Ser 740	Ile	Ile	Pro	Glu	Tyr 745	Phe	Pro	Gly	Glu	Gly 750	Ser	Glu
Trp	Asp	Leu 755	Glu	Leu	Leu	Pro	Tyr 760	Arg	Gly	Val	Gly	Val 765	Ala	Gly	Val
ГÀз	Pro 770	Pro	Pro	Gly	Lys	Gly 775	Ala	Ser	Met	Leu	Leu 780	Lys	Asn	Phe	Ala
Asp 785	Gly	Gly	Phe	Ser	Phe 790	Pro	Ser	Pro	Val	Ala 795	Asp	Arg	Gln	Lys	Ser 800
Gln	Asp	Asp	Ser	Ala 805	Asn	Pro	Glu	Trp	Ser 810	Asn	His	Cys	Asp	Ala 815	Val
Val	Arg	Asn	Glu 820	Ser	Asp	Glu	Pro	Lys 825	Gly	Leu	Ile	Gln	Ser 830	Asp	Ser
Met	Ile	Val 835	Ser	Ser	Thr	ГÀв	Arg 840	Cha	Ser	Gly	Ser	Ser 845	Ser	Glu	Arg
Asn	Leu 850	Arg	Asp	Met	Asp	Asp 855	Glu	Lys	Val	Ala	Ser 860	Ser	Arg	Asn	Ser
Ser 865	Pro	Ser	Ala	Leu	Ser 870	His	Ser	Ser	Asp	Thr 875	Gly	Arg	Glu	His	880 FÀa
Glu	Glu	Asp	Glu	Glu 885	Glu	Thr	Ser	His	Gly 890	Pro	Glu	Glu	Asp	Pro 895	Gly
Thr	Ser	Phe	Glu 900	Asp	Glu	Asp	Ala	Ile 905	Val	Val	Gln	Glu	Gln 910	Val	Arg

Gln		Gln 915	Ala	Gln	Glu	Gln	Asp 920	Phe	Gl	u Tl	hr Pl	he Ası 92!		ı Lys	: Ile
Val	His 930	Arg	Lys	Asn		Thr 935	Gly	Phe	Gl	u G		вр Ly:	s Asr	n Phe	e His
Val 945	Val	Leu	Asn		Val 950	Ile	Ala	Gly	Ar		yr H: 55	is Vai	l Thi	Glu	His 960
Leu	Gly	Ser	Ala	Ala 965	Phe	Ser	Lys	Ala	11 97		ln A	la Hi	a Asl	975	
Thr	Gly	Ile	Asp 980	Val	CÀa	Val		Ile 985		e Ly	ys A	sn Ası	n Lys 990		Phe
Phe		Gln 995	Ser	Leu	Asp		Ile 1000		s L	eu l	Leu 1		yr V 005	/al /	Asn Gln
His	Asp 1010		Ala	a Asp	Lys	Tyr 101		is L	eu	Leu	Arg	Leu 1020		Asp	Tyr
Phe	Tyr 1025		e Arg	g Glu	. His	Leu 103		∍u I	le	Val	CAa	Glu 1035		Leu	ГÀа
Ala	Asn 1040		і Туг	Glu	. Phe	Glr 104		/s P	he	Asn	Arg	Glu 1050		Gly	Gly
Glu	Val 1055		. Phe	e Thr	Met	Pro 106		rg L	eu	Gln	Ser	Ile 1065		Ile	Gln
CÀa	Leu 1070		ı Ala	ı Leu	. Asn	Phe 107		eu H	lis	Gly	Leu	Gly 1080		Ile	His
Cys	Asp 1085		ı Lys	Pro	Glu	. Asr 109		Le L	eu	Ile	Lys	Ser 1095	_	Ser	Arg
Cys	Glu 1100		e Lys	val	. Ile	Asp		eu G	ly	Ser	Ser	Cys 1110	Phe	Glu	Thr
Asp	His 1115		ı Cys	s Ser	Tyr	Val		ln S	er	Arg	Ser	Tyr 1125	Arg	Ala	Pro
Glu	Val 1130		e Leu	ı Gly	Leu	. Pro		/r A	ap	Lys	Lys	Ile 1140		Ile	Trp
Ser	Leu 1145		v Суя	: Ile	e Leu	. Ala		lu L	eu	Cya	Thr	Gly 1155	Asn	Val	Leu
Phe	Gln 1160		n Asp	Ser	Pro	Ala 116		nr L	eu	Leu	Ala	Arg 1170		Ile	Gly
Ile	Ile 1175		/ Ser	: Ile	Asp	Glr 118		Lu M	let	Leu	Ala	Lys 1185	Gly	Arg	Aap
Thr	Cys 1190		г Туг	Phe	Thr	Lys 119		en H	lis	Leu	Leu	Tyr 1200	Glu	Arg	Asn
Gln	Glu 1205		: Asr	a Asn	Leu	. Glu 121		/r L	eu	Ile	Pro	Lys 1215		Ser	Ser
Leu	Arg 1220		g Arg	g Leu	Pro	Met 122		Ly A	ap	Gln	Gly	Phe 1230	Ile	Asp	Phe
Val	Ala 1235	_	: Leu	ı Leu	. Gln	Val		sp P	ro	Lys	Lys	Arg 1245	Pro	Ser	Ala
Phe	Glu 1250		ı Lev	ı Lys	His	Pro		rp L	eu	Thr	Tyr	Pro 1260	_	Glu	Pro
Ile	Ser 1265		ı												
<211 <212)> SE L> LE 2> TY 3> OR	NGTH PE:	H: 11 PRT	.57	oidop	sis	thal	Lian	ıa						

<213> ORGANISM: Arabidopsis thaliana <220> FEATURE:

-222) - O	ממוזיי	TND	יעשמי	TT OM	brn	oot be	. + i a	. 1 le ·	inaa	. 141	n	roto	in 1	rinaga with
< 44.5			eepe			: nyi	ocne	SCIC	al K.	LIIAS	3- III	ce p.	tote.	LII, J	kinase with
< 400)> SI	EQUEI	ICE :	35											
Met 1	Thr	Asp	Gln	Ser 5	Ser	Val	Asp	Gly	Ile 10	Leu	Glu	Phe	Leu	Arg 15	Asn
Asn	Arg	Phe	Ser 20	Gln	Ala	Glu	Glu	Ala 25	Leu	Arg	Asn	Glu	Leu 30	Asn	Asn
Arg	Ser	Asp 35	Ile	Asn	Gly	Phe	Leu 40	Gln	Lys	Leu	Lys	Leu 45	Glu	Asp	ГÀа
Asp	Ser 50	Asn	Glu	ràa	Ala	Ala 55	Gly	Asn	Glu	Leu	Arg 60	Arg	Ser	Gly	Ser
Arg 65	Asp	Ser	Glu	Val	Ser 70	ГÀз	Glu	Leu	Ile	Val 75	ГÀа	Glu	Val	Asp	80 CÀa
Gly	Thr	Ser	Thr	Asn 85	Gly	Ser	Val	Ile	Lys 90	Trp	Glu	Asn	Gly	Ala 95	Thr
Ala	Asp	Asn	Pro 100	Ser	Lys	Lys	Glu	Pro 105	Val	Val	Ser	Ser	Glu 110	Met	Ser
Phe	Thr	Phe 115	Ser	Lys	Asn	Ser	Gly 120	Asp	Ala	Ala	Ala	Pro 125	Pro	Asp	Ala
His	Ser 130	Tyr	Lys	Phe	Thr	Ser 135	Arg	Asn	Gly	Thr	Val 140	Glu	Pro	Ser	Arg
Asn 145	Ile	Asp	Asp	Ser	Ser 150	Ser	Ser	Ser	Leu	Val 155	Asp	Leu	Tyr	Ala	Phe 160
Glu	Gln	Ser	Arg	His 165	Gly	Asn	Phe	Ala	Asp 170	Ile	Asp	Lys	ГÀа	Ile 175	Val
Glu	Thr	Gly	Glu 180	Asp	Ile	Val	Phe	Phe 185	Gly	Asn	Lys	Ser	Thr 190	Ser	Trp
Ser	Gly	Asn 195	Ser	Ser	Lys	Gly	Asn 200	Ser	Gly	Ser	Lys	Ile 205	Lys	Glu	Pro
Asn	Glu 210	Ile	His	Arg	Leu	Val 215	Glu	Asn	Ser	Gly	Lys 220	His	Asp	Ser	Tyr
Lys 225	Gly	Ser	Ile	Leu	Leu 230	Arg	Ser	Glu	Asp	Val 235	Val	Asp	Thr	Ser	Ala 240
Asn	Trp	Arg	Glu	Cys 245	Ser	Val	Lys	Thr	Leu 250	Phe	Gln	Ser	Ser	Arg 255	Gly
Asp	Ala	Ser	Asn 260	Ser	Tyr	Asn	Leu	Val 265	Ser	Ser	Ser	Asp	Lys 270	Arg	Glu
Gly	Lys	Lys 275	ГÀа	Ala	Asp	Ile	Ser 280	Asp	Val	Arg	Val	Ala 285	Ile	ГÀа	Glu
Gln	Glu 290	Ser	Glu	Val	Ala	Arg 295	Ala	Leu	Phe	Phe	Gly 300	ГÀа	Ser	Gln	Ser
Thr 305	Phe	Asp	Asp	ГÀа	Asn 310	Ile	Ser	Ser	Leu	Gly 315	Phe	Pro	Leu	Val	Tyr 320
Asp	Thr	Arg	Lys	Glu 325	Glu	Phe	Pro	Arg	Leu 330	Pro	Pro	Val	Lys	Leu 335	ГЛа
Ser	Glu	Asp	Asn 340	Pro	Leu	Ser	Leu	His 345	Cys	Glu	Glu	ГЛа	Phe 350	Glu	Arg
Asp	Gly	Ser 355	Gly	Pro	Arg	Leu	Ile 360	Asn	Asp	Glu	Asp	Ala 365	Leu	Leu	Ile
Gly	Ser 370	Tyr	Leu	Asp	Val	Pro 375	Ile	Gly	Gln	Glu	Ile 380	Ser	Ser	Ser	Val
Ser 385	Gln	Gly	Ile	Ala	Glu 390	Asp	Ala	Ser	Asp	Leu 395	Val	Ser	Gly	Phe	Ala 400

Thr	Ile	Gly	Asp	Gly 405	Leu	Ser	Glu	Ser	Val 410	Asp	Tyr	Arg	Asn	Glu 415	Tyr
Trp	Asp	Ser	Asp 420	Glu	Tyr	Glu	Asp	Asp 425	Asp	Asp	Ile	Gly	Tyr 430	Val	Arg
Gln	Pro	Ile 435	Glu	Asp	Glu	Pro	Trp 440	Phe	Leu	Ala	His	Glu 445	Ile	Asp	Tyr
Pro	Ser 450	Asp	His	Glu	Lys	Gly 455	Thr	Thr	Arg	Gly	Ser 460	Pro	Asp	His	His
Glu 465	Arg	Asp	Ala	Asn	Lys 470	Asp	Ala	Asp	Asp	Gln 475	Ser	Tyr	Ala	Glu	Glu 480
Ala	Ser	Tyr	Ile	Ser 485	Gly	Glu	Gln	Tyr	Leu 490	Gln	Ser	Lys	Asp	Ala 495	Glu
Pro	Ile	Ser	Ser 500	Glu	Asn	Asp	Arg	Arg 505	Leu	Thr	Val	Ser	Glu 510	Ile	Tyr
Pro	Ala	Ser 515	Lys	ГÀв	Asn	Asp	Leu 520	Leu	Ala	Gln	Tyr	Asp 525	Gly	His	Leu
Met	Asp 530	Glu	Glu	Leu	Leu	Ser 535	Ser	Met	Arg	Asp	Glu 540	Pro	Val	Trp	Gln
Gly 545	Phe	Val	Ala	Gln	Ser 550	Asn	Glu	Leu	Leu	Met 555	Leu	Gly	Asp	Lys	560 Lys
Gly	Ile	Asn	Val	His 565	Arg	Lys	Ser	His	Arg 570	Asp	Asp	Val	Tyr	Val 575	Glu
Asp	Asp	Gln	His 580	Asp	Ser	Val	Arg	Ser 585	Ile	Gly	Val	Gly	Ile 590	Asn	Ser
Asp	Ala	Ala 595	Asp	Phe	Gly	Ser	Glu 600	Val	Arg	Asp	Ser	Leu 605	Ala	Gly	Gly
Ser	Ser 610	Glu	Gly	Asp	Phe	Glu 615	Tyr	Ser	Arg	Asp	His 620	Asp	Pro	Val	Ala
Ser 625	Arg	Phe	Lys	Gln	Leu 630	Tyr	Ser	Glu	Ser	Asp 635	Lys	Lys	His	Ile	Asp 640
Ala	Pro	Asn	Lys	Asn 645	Lys	Gln	Gln	Ala	Ser 650	Lys	Asn	Asp	Gly	Pro 655	Asp
Tyr	Ile	Ala	Asp 660	Asn	Asp	Ser	Ser	Gly 665	Ser	Phe	His	Val	Lys 670	Ile	Gln
Thr	Asp	Gly 675	Gly	Phe	Ser	Phe	Gly 680	Ser	Ser	Gln	Lys	Asp 685	Gly	Gln	Ser
Met	His 690	Ala	Glu	Ser	Ser	Lys 695	Ser	Leu	Trp	Ser	Gly 700	Asn	His	Glu	Thr
Val 705	Thr	Arg	Asp	Arg	Asn 710	Thr	Glu	Arg	Leu	Ser 715	Ala	Ser	Thr	Ala	Met 720
Asp	Asp	Met	Val	Ala 725	Thr	Trp	Arg	Arg	Lys 730	Ser	Ser	Asp	Ser	Ser 735	Ser
Ser	His	Ser	Ser 740	Val	Lys	Asp	Asn	Asn 745	Ala	Thr	Ser	Ile	750	Ser	Leu
Asn	Ser	Ser 755	Pro	Ser	Ser	Leu	Ser 760	Asn	Tyr	Ala	CÀa	Glu 765	Glu	Arg	Lys
His	Ala 770	Asp	Lys	Glu	Asp	Asp 775	Arg	Asn	Asp	Ser	Ser 780	Glu	Ile	Glu	Asp
Asp 785	Asn	Ala	Thr	Ala	Leu 790	Asp	Asp	Glu	Glu	Ala 795	Val	Ala	Val	Gln	Glu 800
Gln	Val	Arg	Gln	Ile 805	Lys	Ala	Gln	Glu	Glu 810	Glu	Phe	Glu	Thr	Phe 815	Asp

-continued

Leu Lys Ile Val His Arg Lys Asn Arg Thr Gly Phe Glu Glu Glu Lys Asn Phe Asn Val Val Leu Asn Ser Val Ile Ala Gly Arg Tyr His Val Thr Glu Tyr Leu Gly Ser Ala Ala Phe Ser Lys Ala Ile Gln Ala His 855 Asp Leu Gln Thr Gly Met Asp Val Cys Ile Lys Ile Ile Lys Asn Asn Lys Asp Phe Phe Asp Gln Ser Leu Asp Glu Ile Lys Leu Leu Lys Tyr Val Asn Lys His Asp Pro Ala Asp Lys Tyr His Leu Leu Arg Leu Tyr Asp Tyr Phe Tyr Tyr Arg Glu His Leu Leu Ile Val Cys Glu Leu Leu Lys Ala Asn Leu Tyr Glu Phe His Lys Phe Asn Arg Glu Ser Gly Gly 935 Glu Val Tyr Phe Thr Met Pro Arg Leu Gln Ser Ile Thr Ile Gln Cys 950 Leu Glu Ser Leu Gln Phe Leu His Gly Leu Gly Leu Ile His Cys Asp Leu Lys Pro Glu Asn Ile Leu Val Lys Ser Tyr Ser Arg Cys Glu Ile 985 Lys Val Ile Asp Leu Gly Ser Ser Cys Phe Glu Thr Asp His Leu Cys 1000 1005 Ser Tyr Val Gln Ser Arg Ser Tyr Arg Ala Pro Glu Val Ile Leu 1015 Gly Leu Pro Tyr Asp Lys Lys Ile Asp Val Trp Ser Leu Gly Cys 1025 1030 1035 Ile Leu Ala Glu Leu Cys Thr Gly Asn Val Leu Phe Gln Asn Asp 1045 Ser Pro Ala Ser Leu Leu Ala Arg Val Met Gly Ile Val Gly Ser 1060 Phe Asp Asn Glu Met Leu Thr Lys Gly Arg Asp Ser His Lys Tyr 1075 Phe Thr Lys Asn Arg Met Leu Tyr Glu Arg Asn Gln Glu Ser Asn 1090 Arg Leu Glu Tyr Leu Ile Pro Lys Arg Thr Ser Leu Arg His Arg Leu Pro Met Gly Asp Gln Gly Phe Thr Asp Phe Val Ala His Leu Leu Glu Ile Asn Pro Lys Lys Arg Pro Ser Ala Ala Glu Ala Leu 1135 Lys His Pro Trp Leu Ser Tyr Pro Tyr Glu Pro Ile Ser Ala 1150 <210> SEQ ID NO 36 <211> LENGTH: 1155 <212> TYPE: PRT <213> ORGANISM: Arabidopsis thaliana <220> FEATURE: <223> OTHER INFORMATION: putative protein kinase-like protein, kinase with gatekeeper Cys <400> SEQUENCE: 36

Met Ala Asp Gln Ser Ser Val Asp Gly Ile Leu Glu Phe Leu Arg Asn 1 5 10 15

Asn	Arg	Phe	Ser 20	Asn	Ala	Glu	Glu	Ala 25	Leu	Arg	Asn	Glu	Leu 30	Ser	Asn
Arg	Ser	Asp 35	Ile	Asn	Gly	Phe	Leu 40	Gln	Lys	Leu	Met	Leu 45	Glu	Glu	ГХа
Asp	Ser 50	Ser	Lys	Asp	Ser	Asn 55	Glu	Arg	Ala	Asn	Gly 60	Lys	Glu	Leu	Arg
Arg 65	Ser	Gly	Ser	Arg	Asp 70	Ser	Glu	Val	Ser	Lys 75	Glu	Leu	Val	Val	80 Lys
Glu	Val	Asp	Сла	Gly 85	Thr	Ser	Thr	Thr	Gly 90	Ser	Val	Ile	Lys	Trp 95	Glu
Asn	Gly	Ala	Ala 100	Ala	Glu	Asn	Pro	Ser 105	Lys	Lys	Glu	Thr	Phe 110	Val	Pro
Ser	Glu	Met 115	Ser	Phe	Thr	Phe	Ser 120	ГЛа	Asn	Ser	Gly	Asp 125	Ala	Ala	Ala
Pro	Pro 130	Asp	Ala	His	Ser	Tyr 135	Glu	Phe	Thr	Ser	Gly 140	Asn	Gly	Thr	Leu
Glu 145	Pro	Tyr	Gly	Asn	Ile 150	Asp	Asp	Asn	Ser	Ser 155	Ser	Ser	Leu	Val	Asp 160
Ser	Tyr	Ala	Ile	Glu 165	Gln	Leu	Ala	Asp	Ile 170	Asp	Lys	ГÀа	Ile	Val 175	Glu
Thr	Gly	Glu	180	Ile	Val	Phe	Phe	Gly 185	Asn	Lys	Ser	Thr	Leu 190	Leu	Ser
Gly	Asn	Ser 195	Ser	Lys	Gly	Asn	Ser 200	Gly	Ser	Lys	Ile	Lys 205	Lys	Pro	Asn
Glu	Ile 210	Asp	Gln	Leu	Gly	Glu 215	Ile	Phe	Gly	ГÀз	His 220	Asp	Ser	Tyr	ГÀв
Gly 225	Ser	Val	Leu	Leu	Arg 230	Thr	Glu	Aap	Val	Ile 235	Asp	Thr	Ser	Glu	Asn 240
Trp	Lys	Glu	Arg	Ser 245	Val	Lys	Thr	Leu	Phe 250	Gln	Ser	Ser	Arg	Gly 255	Asp
Ala	Ser	Asn	Ser 260	Tyr	Asn	Leu	Val	Ser 265	Ser	Ser	Asp	Lys	Arg 270	Glu	Gly
Lys	Lys	Lys 275	Ala	Glu	Ile	Ser	Asp 280	Val	Arg	Val	Ala	Ile 285	ГÀа	Glu	Gln
Glu	Ser 290	Glu	Val	Ala	Arg	Ala 295	Leu	Phe	Phe	Gly	300 TÀs	Ser	Gln	Ser	Thr
Phe 305	Asp	Asp	rys	Asn	Ile 310	Ser	Ser	Leu	Gly	Phe 315	Pro	Leu	Val	Phe	Asp 320
Thr	Arg	ГÀа	Glu	Glu 325	Phe	Pro	Arg	Leu	Pro 330	Pro	Val	ГÀа	Leu	335 Tàa	Ser
Glu	Asp	Asn	Pro 340	Leu	Ser	Leu	His	Сув 345	Glu	Glu	Lys	Phe	Glu 350	Arg	Asp
Gly	Ser	Gly 355	Pro	Arg	Leu	Ile	Asn 360	Aap	Asp	Glu	Ala	Leu 365	Leu	Ile	Gly
Ser	Tyr 370	Leu	Aap	Val	Pro	Ile 375	Gly	Gln	Glu	Ile	Ser 380	Ser	Ser	Val	Ser
Gln 385	Gly	Ile	Ala	Asp	Leu 390	Val	Ser	Gly	Phe	Ala 395	Thr	Ile	Gly	Asp	Gly 400
Leu	Ser	Glu	Ser	Val 405	Asp	Tyr	Arg	Asn	Glu 410	Tyr	Trp	Asp	Ser	Asp 415	Glu
Tyr	Glu	Asp	Asp 420	Gly	Asp	Ile	Gly	Tyr 425	Val	Arg	Gln	Pro	Ile 430	Glu	Asp

Glu	Thr	Trp 435	Phe	Leu	Ala	His	Glu 440	Ile	Asp	Tyr	Pro	Ser 445	Asp	His	Glu
Lys	Gly 450	Thr	Thr	Arg	Gly	Ser 455	Pro	Asp	His	His	Asp 460	Arg	Asp	Ala	Asn
Lys 465	Asp	Glu	Asp	Asp	Gln 470	Ser	Tyr	Ala	Glu	Asp 475	Glu	Ser	Tyr	Leu	Ser 480
Gly	Glu	Arg	Tyr	Leu 485	Gln	Ser	Lys	Asp	Ala 490	Glu	Pro	Ile	Ser	Ser 495	Glu
Asn	Asp	Arg	Arg 500	Leu	Thr	Val	Ser	Glu 505	Ile	Tyr	Pro	Ala	Суs 510	Lys	ГÀа
Asn	Asp	Leu 515	Leu	Ala	Gln	Tyr	Asp 520	Gly	Gln	Leu	Met	Asp 525	Glu	Asp	Leu
Leu	Asn 530	Ser	Met	Arg	Thr	Glu 535	Pro	Val	Trp	Gln	Gly 540	Phe	Val	Ala	Gln
Ser 545	Asn	Glu	Leu	Val	Met 550	Leu	Gly	Asp	ГЛа	Lys 555	Gly	Ile	Asn	Val	His 560
Arg	ГÀа	Ser	His	Leu 565	Asp	Asp	Val	Tyr	Val 570	Glu	Asp	Asp	Gln	His 575	Asp
Ser	Val	Arg	Ser 580	Ile	Gly	Val	Gly	Ile 585	Asn	Ser	Asp	Ala	Ala 590	Asp	Phe
Gly	Ser	Glu 595	Val	Arg	Aap	Ser	Leu 600	Ala	Gly	Gly	Ser	Ser 605	Glu	Gly	Asp
Phe	Glu 610	Tyr	Ser	Arg	Asp	His 615	Asp	Pro	Val	Ala	Ser 620	Arg	Phe	Lys	Gln
Leu 625	Tyr	Ser	Glu	Ser	Asp	Lys	Lys	His	Ile	Asp 635	Gly	Gln	Asn	Lys	Asn 640
Lys	Gln	Lys	Ala	Ser 645	Lys	Asn	Asp	Ser	Gly 650	Gly	Ser	Phe	His	Val 655	ГÀв
Ile	Gln	Thr	Asp	Gly	Asp	Phe	Ser	Phe 665	Gly	Ser	Ser	Gln	Lys 670	Asp	Gly
Gln	Leu	Met 675	His	Ala	Glu	Ser	Ser 680	Lys	Ser	Leu	Trp	Ser 685	Gly	Asn	Arg
Glu	Thr 690	Val	Thr	Arg	Asp	Arg 695	Asn	Thr	Glu	Leu	Leu 700	Ser	Ala	Ser	Thr
Ala 705	Thr	Asp	Asp	Met	Val 710	Ala	Thr	Trp	Arg	Gln 715	Lys	Ser	Ser	Asp	Ser 720
Ser	Ser	Ser	Arg	Ser 725	Ser	Val	Lys	Glu	Asn 730		Ala	Thr	Ser	Ile 735	ГÀа
Ser	Val	Asn	Ser 740	Ser	Pro	Ser	Ser	Leu 745	Ser	Asn	Tyr	Ala	Arg 750	Gly	Glu
Arg	ГÀа	His 755	Ala	Glu	Lys	Glu	Asn 760	Asp	Ser	Ser	Glu	Arg 765	Glu	Asp	Gly
His	Ala 770	Thr	Ala	Leu	Asp	Asp 775	Glu	Glu	Ala	Val	Ala 780	Val	Gln	Glu	Gln
Val 785	Arg	Gln	Ile	Lys	Ala 790	Gln	Glu	Glu	Glu	Phe 795	Glu	Thr	Phe	Asp	Leu 800
ГÀз	Ile	Val	His	Arg 805	Lys	Asn	Arg	Thr	Gly 810	Phe	Glu	Glu	Glu	Lys 815	Asn
Phe	Asn	Val	Val 820	Leu	Asn	Ser	Val	Ile 825	Ala	Gly	Arg	Tyr	His 830	Val	Thr
Glu	Tyr	Leu 835	Gly	Ser	Ala	Ala	Phe 840	Ser	Lys	Ala	Ile	Gln 845	Ala	His	Asp
Leu	Gln	Thr	Gly	Met	Asp	Val	Cys	Ile	Lys	Ile	Ile	Lys	Asn	Asn	Lys

	850					855					860				
Asp 865	Phe	Phe	Asp	Gln	Ser 870	Leu	Asp	Glu	Ile	Lys 875	Leu	Leu	Lys	Tyr	Val 880
Asn	Lys	His	Asp	Pro 885	Ala	Asp	Lys	Tyr	His 890	Leu	Leu	Arg	Leu	Tyr 895	Asp
Tyr	Phe	Tyr	Tyr 900	Arg	Glu	His	Leu	Leu 905	Ile	Val	Сув	Glu	Leu 910	Leu	Lys
Ala	Asn	Leu 915	Tyr	Glu	Phe	His	Lys 920	Phe	Asn	Arg	Glu	Ser 925	Gly	Gly	Glu
Val	Tyr 930	Phe	Thr	Met	Pro	Arg 935	Leu	Gln	Ser	Ile	Thr 940	Ile	Gln	Сув	Leu
Glu 945	Ser	Leu	Gln	Phe	Leu 950	His	Gly	Leu	Gly	Leu 955	Ile	His	Cys	Asp	Leu 960
Lys	Pro	Glu	Asn	Ile 965	Leu	Val	Lys	Ser	Tyr 970	Ser	Arg	Сув	Glu	Ile 975	Lys
Val	Ile	Asp	Leu 980	Gly	Ser	Ser	Cys	Phe 985	Glu	Thr	Asp	His	Leu 990	Cys	Ser
Tyr	Val	Gln 995	Ser	Arg	Ser	Tyr	Arg		a Pro	o Glu	ı Val	l Il		eu G	ly Leu
Pro	Tyr 1010		Ly:	s Lys	; Ile	e Ası		al To	cp Se	er Le		ly 020	Сув :	Ile 1	Leu
Ala	Glu 1025		ı Cys	₹ Thi	Gl _y	/ Asr 103		sp Ly	/s L	γs Va		sn :	Pro (Cys 1	Leu
Asn	Ile 1040		ı Let	ı Lev	ı Lev	1 Glr 104		al Le	eu Ph	ne Gl		sn . 050	Asp :	Ser 1	?ro
Ala	Ser 1055		ı Let	ı Ala	a Arg	y Val		et GI	Ly II	le Va		ly . 065	Ser 1	Phe I	łap
Asn	Glu 1070		Let	ı Thi	Lys	Gly 107		rg As	sp Se	er Hi		080 Ys	Tyr 1	Phe '	Γhr
Lys	Asn 1085		g Met	. Leu	і Туі	Glu 109		rg As	en Gl	ln GI		er . 095	Asn A	Arg l	Leu
Glu	Tyr 1100		ı Ile	e Pro	Lys	arg 110		ır Se	er Le	eu Ai		is . 110	Arg 1	Leu l	?ro
Met	Gly 1115	-	Glı	n Gly	/ Phe	Th:		sp Pl	ne Va	al Al		is 125	Leu 1	Leu (3lu
Ile	Asn 1130		Ly:	s Lys	s Arg	9 Pro		er Al	La Al	la GI		la :	Leu 1	Lys I	lis
Pro	Trp 1145		ı Sei	г Туз	r Pro	Туз 115		Lu Pi	ro II	le Se		la 155			
<211 <212 <213 <220		ENGTH PE: RGANI EATUR THER	H: 69 PRT ISM: RE: INFO	54 Arak	ION:					ọrot∈	∍in l	kina	se,]	kinas	se with
< 400)> SE	EQUE1	ICE :	37											
Met 1	Met	Gln	Phe	His 5	Phe	Gln	Phe	Tyr	Val 10	Gly	Pro	Val	Phe	Thr 15	Leu
Arg	Pro	Ser	Lys 20	Gly	Phe	Leu	Ser	Thr 25	Сла	Leu	Val	Ser	Phe	Leu	Phe
Val	Thr	Thr	Thr	Phe	Сув	Ser	Tyr	Ala	Ile	Ala	Asp	Leu 45	Asn	Ser	Asp

val for for the cys Ser fyr Ala lie Ala Asp Leu Ash Ser Asj 35 40 45

Arg	Gln 50	Ala	Leu	Leu	Ala	Phe 55	Ala	Ala	Ser	Val	Pro 60	His	Leu	Arg	Arg
Leu 65	Asn	Trp	Asn	Ser	Thr 70	Asn	His	Ile	Cys	Lys 75	Ser	Trp	Val	Gly	Val 80
Thr	Cys	Thr	Ser	Asp 85	Gly	Thr	Ser	Val	His 90	Ala	Leu	Arg	Leu	Pro 95	Gly
Ile	Gly	Leu	Leu 100	Gly	Pro	Ile	Pro	Pro 105	Asn	Thr	Leu	Gly	Lys 110	Leu	Glu
Ser	Leu	Arg 115	Ile	Leu	Ser	Leu	Arg 120	Ser	Asn	Leu	Leu	Ser 125	Gly	Asn	Leu
Pro	Pro 130	Asp	Ile	His	Ser	Leu 135	Pro	Ser	Leu	Asp	Tyr 140	Ile	Tyr	Leu	Gln
His 145	Asn	Asn	Phe	Ser	Gly 150	Glu	Val	Pro	Ser	Phe 155	Val	Ser	Arg	Gln	Leu 160
Asn	Ile	Leu	Asp	Leu 165	Ser	Phe	Asn	Ser	Phe 170	Thr	Gly	Lys	Ile	Pro 175	Ala
Thr	Phe	Gln	Asn 180	Leu	Lys	Gln	Leu	Thr 185	Gly	Leu	Ser	Leu	Gln 190	Asn	Asn
ГÀа	Leu	Ser 195	Gly	Pro	Val	Pro	Asn 200	Leu	Asp	Thr	Val	Ser 205	Leu	Arg	Arg
Leu	Asn 210	Leu	Ser	Asn	Asn	His 215	Leu	Asn	Gly	Ser	Ile 220	Pro	Ser	Ala	Leu
Gly 225	Gly	Phe	Pro	Ser	Ser 230	Ser	Phe	Ser	Gly	Asn 235	Thr	Leu	Leu	Cys	Gly 240
Leu	Pro	Leu	Gln	Pro 245	CAa	Ala	Thr	Ser	Ser 250	Pro	Pro	Pro	Ser	Leu 255	Thr
Pro	His	Ile	Ser 260	Thr	Pro	Pro	Leu	Pro 265	Pro	Phe	Pro	His	Lys 270	Glu	Gly
Ser	Lys	Arg 275	Lys	Leu	His	Val	Ser 280	Thr	Ile	Ile	Pro	Ile 285	Ala	Ala	Gly
Gly	Ala 290	Ala	Leu	Leu	Leu	Leu 295	Ile	Thr	Val	Ile	Ile 300	Leu	Сув	Cys	CÀa
Ile 305	Lys	Lys	Lys	Asp	Lys 310	Arg	Glu	Asp	Ser	Ile 315	Val	Lys	Val	Lys	Thr 320
Leu	Thr	Glu	ГÀа	Ala 325	rys	Gln	Glu	Phe	Gly 330	Ser	Gly	Val	Gln	Glu 335	Pro
Glu	Lys	Asn	Lys 340	Leu	Val	Phe	Phe	Asn 345	Gly	Càa	Ser	Tyr	Asn 350	Phe	Asp
Leu	Glu	Asp 355	Leu	Leu	Arg	Ala	Ser 360	Ala	Glu	Val	Leu	Gly 365	ГÀа	Gly	Ser
Tyr	Gly 370	Thr	Ala	Tyr	ГÀа	Ala 375	Val	Leu	Glu	Glu	Ser 380	Thr	Thr	Val	Val
Val 385	Lys	Arg	Leu	ГÀа	Glu 390	Val	Ala	Ala	Gly	Lys 395	Arg	Glu	Phe	Glu	Gln 400
Gln	Met	Glu	Ile	Ile 405	Ser	Arg	Val	Gly	Asn 410	His	Pro	Ser	Val	Val 415	Pro
Leu	Arg	Ala	Tyr 420	Tyr	Tyr	Ser	Lys	Asp 425	Glu	Lys	Leu	Met	Val 430	Сув	Asp
Tyr	Tyr	Pro 435	Ala	Gly	Asn	Leu	Ser 440	Ser	Leu	Leu	His	Gly 445	Asn	Arg	Gly
Ser	Glu 450	Lys	Thr	Pro	Leu	Asp 455	Trp	Asp	Ser	Arg	Val 460	ГЛа	Ile	Thr	Leu
Ser	Ala	Ala	ГЛа	Gly	Ile	Ala	His	Leu	His	Ala	Ala	Gly	Gly	Pro	Lys

465					470					475					480
Phe	Ser	His	Gly	Asn 485	Ile	Lys	Ser	Ser	Asn 490	Val	Ile	Met	Lys	Gln 495	Glu
Ser	Asp	Ala	Cys 500	Ile	Ser	Asp	Phe	Gly 505	Leu	Thr	Pro	Leu	Met 510	Ala	Val
Pro	Ile	Ala 515	Pro	Met	Arg	Gly	Ala 520	Gly	Tyr	Arg	Ala	Pro 525	Glu	Val	Met
Glu	Thr 530	Arg	Lys	His	Thr	His 535	Lys	Ser	Asp	Val	Tyr 540	Ser	Phe	Gly	Val
Leu 545	Ile	Leu	Glu	Met	Leu 550	Thr	Gly	Lys	Ser	Pro 555	Val	Gln	Ser	Pro	Ser 560
Arg	Asp	Asp	Met	Val 565	Asp	Leu	Pro	Arg	Trp 570	Val	Gln	Ser	Val	Val 575	Arg
Glu	Glu	Trp	Thr 580	Ser	Glu	Val	Phe	Asp 585	Ile	Glu	Leu	Met	Arg 590	Phe	Gln
Asn	Ile	Glu 595	Glu	Glu	Met	Val	Gln 600	Met	Leu	Gln	Ile	Ala 605	Met	Ala	Cys
Val	Ala 610	Gln	Val	Pro	Glu	Val 615	Arg	Pro	Thr	Met	Asp 620	Asp	Val	Val	Arg
Met 625	Ile	Glu	Glu	Ile	Arg 630	Val	Ser	Asp	Ser	Glu 635	Thr	Thr	Arg	Pro	Ser 640
Ser	Asp	Asp	Asn	Ser 645	rys	Pro	Lys	Asp	Ser 650	Asn	Val	Gln	Val		
-211		314011													
<213 <220	2> T) 3> OF 0> FF 3> Of ki	RGANI EATUF THER	SM: RE: INFO , T	ORMA'	30,	: MAI	PK/M					_			DK protein with
<213 <213 <220 <223	2 > T) 3 > OF 0 > FF 3 > OT ki	RGANI EATUF THER inase ateke	ISM: RE: INFO e, T,	ORMA' /STK r Cy:	TION 30,	: MAI	PK/M					_			_
<212 <213 <220 <223	2 > TY 3 > OF 0 > FF 3 > OY ki ga 0 > SF	RGANI EATUF THER Lnase ateke	ISM: RE: INFO e, T, eepei	ORMA: /STK r Cy: 38	TION 30,	: MAl rena	PK/MZ al tu	ımor	anti	igen,	, RAG	ΞĒ1,	kina	ase 1	with
<212 <213 <220 <223 <400 Met	2 > TY 3 > OF 0 > FF 3 > OY ki ga D > SF Lys	RGANI EATUR THER inase inase inase EQUEN	ISM: RE: INF(e, T, eepei RCE:	ORMA' /STK r Cy: 38 Lys 5	rion 30,	: MAI rena	PK/MZ al tu Gly	ımor Lys	Ile	igen, Gly	, RAG	Gly	kina Thr	Phe	with Ser
<212 <213 <220 <223 <400 Met 1	2 > TY 3 > OF 3 > OF 8 > OT ki ga 0 > SF Lys	RGANI EATUF THER inase ateke EQUEN Asn Met	ISM: RE: INFO , T, eeper RCE: Tyr Lys 20	ORMA' /STK r Cy: 38 Lys 5	ΓΙΟΝ 30, ≅ Ala	: MAI rena Ile Ser	PK/MP al tu Gly Leu	Lys Arg 25	Ile 10 Asp	Gly Gly	Glu Asn	Gly Tyr	Thr Tyr 30	Phe 15 Ala	with Ser Cys
<212<213<220<223	2> TY 3> OF 0> FF 3> OY ki ga 0> SF Lys Val	EGANI EATUF THER inase ateke EQUEN Asn Met Met	ISM: RE: INFO E, T, eeper ICE: Tyr Lys 20 Lys	ORMA' /STK r Cy: 38 Lys 5 Met	FION 30, 5 Ala Gln	: MAI rena Ile Ser Phe	Gly Leu Glu 40	Lys Arg 25 Ser	Ile 10 Asp	Gly Gly Glu	Glu Asn Gln	Gly Tyr Val 45	Thr Tyr 30 Asn	Phe 15 Ala Ser	with Ser Cys Leu
<212<213<220<2233 400 Met 1 Glu Lys Arg</td <td>22> TY 33> OF 33> OF 33> OY 83 93 93 93 Val Glu 50</td> <td>RGANI FATUH FHER inase inase Ateke Asn Met Met 35</td> <td>ISM: RE: INFC ≥, T, eeper MCE: Tyr Lys 20 Lys</td> <td>DRMA'/STK r Cy: 38 Lys 5 Met Gln</td> <td>FION 30, 5 Ala Gln His</td> <td>: MAI rena</td> <td>Gly Leu Glu 40 Arg</td> <td>Lys Arg 25 Ser Leu</td> <td>Ile 10 Asp Ile Asn</td> <td>Gly Gly Glu Pro</td> <td>Glu Asn Gln His</td> <td>Gly Tyr Val 45</td> <td>Thr Tyr 30 Asn</td> <td>Phe 15 Ala Ser</td> <td>with Ser Cys Leu Leu</td>	22> TY 33> OF 33> OF 33> OY 83 93 93 93 Val Glu 50	RGANI FATUH FHER inase inase Ateke Asn Met Met 35	ISM: RE: INFC ≥, T, eeper MCE: Tyr Lys 20 Lys	DRMA'/STK r Cy: 38 Lys 5 Met Gln	FION 30, 5 Ala Gln His	: MAI rena	Gly Leu Glu 40 Arg	Lys Arg 25 Ser Leu	Ile 10 Asp Ile Asn	Gly Gly Glu Pro	Glu Asn Gln His	Gly Tyr Val 45	Thr Tyr 30 Asn	Phe 15 Ala Ser	with Ser Cys Leu Leu
<212 <213 <222 <2223 <400 Met 1 Glu Lys Arg	2> TY 3> OF 5> FF 3> OT 8: 92 92 Val Gln Glu 50	EATURER INASCE OF THE RESERVE AS IN MET SECOND IN THE RESERVE AS IN MET SECOND IN THE RESERVE AS IN TH	ISM: RE: INF(E) INF(DRMA: /STK r Cy: 38 Lys 5 Met Gln Ala	Ala Gln His Leu Val	: MAI rend Ile Ser Phe Arg 55	PK/M2 Arg Asp	Lys Arg 25 Ser Leu Arg	Ile 10 Asp Ile Asn	Gly Glu Pro Ser 75	Glu Asn Gln His 60	Gly Tyr Val 45 Pro	Thr Tyr 30 Asn Leu	Phe 15 Ala Ser Ile	Ser Cys Leu Leu Leu 80
<212<213 2223</223</223</224</224</225</225</225</226</226</226</227</227</228</228</228</228</228</228</td <td>22> TY 33> OF 33> OF 33> OF 43 93 93 Val Glu 50 Leu Cys</td> <td>RGANI PHER Inase ateke ateke GQUEN Asn Met 35 Ile His</td> <td>(SM: RE: INF(), T, eeper Tyr Lys 20 Lys Gln Glu</td> <td>DRMA: //STK r Cy: 38 Lys 5 Met Gln Ala Val Met 85</td> <td>TION 30, 30, 30 Ala Gln His Leu Val 70</td> <td>: MAI rena Ile Ser Phe Arg 55 Phe</td> <td>Gly Leu Glu 40 Arg Asp</td> <td>Lys Arg 25 Ser Leu Arg</td> <td>Ile 10 Asp Ile Asn Lys Tyr 90</td> <td>Gly Glu Pro Ser 75 Glu</td> <td>Glu Asn Gln His 60 Gly Leu</td> <td>Gly Tyr Val 45 Pro Ser</td> <td>Thr Tyr 30 Asn Asn Leu Arg</td> <td>Phe 15 Ala Ser Ile Ala Gly 95</td> <td>Ser Cys Leu Leu Leu Arg</td>	22> TY 33> OF 33> OF 33> OF 43 93 93 Val Glu 50 Leu Cys	RGANI PHER Inase ateke ateke GQUEN Asn Met 35 Ile His	(SM: RE: INF(), T, eeper Tyr Lys 20 Lys Gln Glu	DRMA: //STK r Cy: 38 Lys 5 Met Gln Ala Val Met 85	TION 30, 30, 30 Ala Gln His Leu Val 70	: MAI rena Ile Ser Phe Arg 55 Phe	Gly Leu Glu 40 Arg Asp	Lys Arg 25 Ser Leu Arg	Ile 10 Asp Ile Asn Lys Tyr 90	Gly Glu Pro Ser 75 Glu	Glu Asn Gln His 60 Gly Leu	Gly Tyr Val 45 Pro Ser	Thr Tyr 30 Asn Asn Leu Arg	Phe 15 Ala Ser Ile Ala Gly 95	Ser Cys Leu Leu Leu Arg
<212 <213 <220 <220 <400 Met 1 Glu Lys Arg Ala 65 Ile Arg	22> TY 3> OF 3> OF 3> OF 8; 93> OF 12 12 13 14 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	RGANI EATUP PHER Inase inase iteke EQUEN Asn Met 35 Ile His Glu	(SM: RE: INFC INFC INFC INFC INFC INFC INFC INFC	DRMA'/STK r Cy: 38 Lys 5 Met Gln Ala Val Met 85 Ser	Ala Gln His Leu Val 70 Asp	: MAI rena Ile Ser Phe Arg 55 Phe Met	Gly Leu Glu 40 Arg Asp Asn	Lys Arg 25 Ser Leu Arg Ile Ile 105	Ile 10 Asp Ile Asn Lys Tyr 90 Met	Gly Glu Pro Ser 75 Glu Leu	Glu Asn Gln His 60 Gly Leu	Gly Tyr Val 45 Pro Ser Ile	Thr Tyr 30 Asn Asn Leu Arg	Phe 15 Ala Ser Ile Ala Gly 95 Gln	Ser Cys Leu Leu Leu Arg
<212 <213 <220 <223 <400 Met 1 Glu Lys Arg Ala 65 Ile Arg Cys	22> TY 33> OF	RGAND EATUP FHER inassateke ateke Asn Met 35 Ile His Glu Pro	(SM: RE: INFC SM: INFC SM: RE: I	DRMA/STK r Cy: 38 Lys 5 Met Gln Ala Val Met 85 Ser Asp	Ala Gln His Leu Val 70 Asp	: MAI rend Ile Ser Phe Arg 55 Phe Met Lys	PK/MM Gly Leu Glu 40 Arg Asp Asn Lys	Lys Arg 25 Ser Leu Arg Ile Ile 105 Arg	Ile 10 Asp Ile Asn Lys Tyr 90 Met	Gly Glu Pro Ser 75 Glu Leu Gly	Glu Asn Gln His 60 Gly Leu Tyr	Gly Tyr Val 45 Pro Ser Ile Met Phe 125	Thr Tyr 30 Asn Asn Leu Arg Tyr 110	Phe 15 Ala Ser Ile Ala Gly 95 Gln Arg	Ser Cys Leu Leu Leu Arg Leu Asp
<212<213 220<<2223</224</p <400 Met 1 Glu Lys Arg Ala 65 Ile Arg Cys Val	22> TY 33> OF 33> OF 33> OF 83> OF 83> OF 83> OF 83> OF 83> OF 84 84 85 85 85 85 85 85 85 85 85 85 85 85 85	RGANI EATUR PHER Inase ateke EQUER Asn Met 35 Ile His Glu Pro Ser 115	(SM: RE: INFC INFC INFC INFC INFC INFC INFC INFC	ORMA/ /STK r Cy; 38 Lys 5 Met Gln Ala Val Met 85 Ser Asp	TION 30, 30, 30, 30, 30, 30, 30, 30, 30, 30,	: MAI rena Ile Ser Phe Arg 55 Phe Met Lys Met	PK/MM Gly Leu Glu 40 Arg Asp Lys His 120 Val	Lys Arg 25 Ser Leu Arg Ile 105 Arg	Ile 10 Asp Ile Asn Lys Tyr 90 Met Asn	Gly Glu Pro Ser 75 Glu Leu Gly	Glu Asn Gln His 60 Gly Leu Tyr Ile Val	Gly Tyr Val 45 Pro Ser Ile Met Phe 125 Leu	Thr Tyr 30 Asn Asn Leu Arg Tyr 110 His	Phe 15 Ala Ser Ile Ala Gly 95 Gln Arg	Ser Cys Leu Leu Leu Arg Leu Asp
<212<213 220</223</400 Met 1 Glu Lys Arg Ala 65 Ile Arg Cys Val Asp 145</td <td>22> TY 33> OF OF</td> <td>RGANDEATURE FIRE AS A SAN MET A SAN M</td> <td>(SM: RE: INFC SM: INFC SM: RE: I</td> <td>ORMAN //STK r Cy: 38 Lys 5 Met Gln Ala Val Met 85 Ser Asp Asn</td> <td>TION 30, 5 Ala Gln His Leu Val 70 Asp Glu His Ile Arg</td> <td>: MAN ren Ile Ser Phe Arg 55 Phe Met Lys Met Leu 135 Ser</td> <td>PK/MM Gly Leu Glu 40 Arg Asp Asp Lys His 120 Val</td> <td>Lys Arg 25 Ser Leu Arg Ile 105 Arg Lys</td> <td>Ile 10 Asp Ile Asn Lys Tyr 90 Met Asn Gln Ser</td> <td>Gly Glu Pro Ser 75 Glu Leu Gly Asp Lys 155</td> <td>Glu Asn Gln His 60 Gly Leu Tyr Ile Val 140 Gln</td> <td>Gly Tyr Val 45 Pro Ser Ile Met Phe 125 Leu Pro</td> <td>Thr Tyr 30 Asn Asn Leu Arg Tyr 110 His</td> <td>Phe 15 Ala Ser Ile Ala Gly 95 Gln Arg Leu Thr</td> <td>Ser Cys Leu Leu Leu 80 Arg Leu Asp Gly Glu 160</td>	22> TY 33> OF	RGANDEATURE FIRE AS A SAN MET A SAN M	(SM: RE: INFC SM: INFC SM: RE: I	ORMAN //STK r Cy: 38 Lys 5 Met Gln Ala Val Met 85 Ser Asp Asn	TION 30, 5 Ala Gln His Leu Val 70 Asp Glu His Ile Arg	: MAN ren Ile Ser Phe Arg 55 Phe Met Lys Met Leu 135 Ser	PK/MM Gly Leu Glu 40 Arg Asp Asp Lys His 120 Val	Lys Arg 25 Ser Leu Arg Ile 105 Arg Lys	Ile 10 Asp Ile Asn Lys Tyr 90 Met Asn Gln Ser	Gly Glu Pro Ser 75 Glu Leu Gly Asp Lys 155	Glu Asn Gln His 60 Gly Leu Tyr Ile Val 140 Gln	Gly Tyr Val 45 Pro Ser Ile Met Phe 125 Leu Pro	Thr Tyr 30 Asn Asn Leu Arg Tyr 110 His	Phe 15 Ala Ser Ile Ala Gly 95 Gln Arg Leu Thr	Ser Cys Leu Leu Leu 80 Arg Leu Asp Gly Glu 160

```
Gly Phe Tyr Thr Tyr Lys Met Asp Leu Trp Ser Ala Gly Cys Val Phe
                               185
Tyr Glu Ile Ala Ser Leu Gln Pro Leu Phe Pro Gly Val Asn Glu Leu
                           200
Asp Gln Ile Ser Lys Ile His Asp Val Ile Gly Thr Pro Cys Gln Lys
Thr Leu Thr Lys Phe Lys Gln Ser Arg Ala Met Ser Phe Asp Phe Pro
Phe Lys Lys Gly Ser Gly Ile Pro Leu Leu Thr Ala Asn Leu Ser Pro
Gln Cys Leu Ser Leu Leu His Ala Met Val Ala Tyr Asp Pro Asp Glu
Arg Ile Ala Ala His Gln Ala Leu Gln His Pro Tyr Phe Gln Val Gln
Arg Ala Ala Glu Thr Gln Thr Leu Ala Lys His Arg Arg Ala Phe Cys
            295
Pro Lys Phe Ser Met Val Pro Glu Ser Ser Ser His Asn Trp Ser Phe
            310
                             315
Ser Gln Glu Gly Arg Lys Gln Lys Gln Ser Leu Arg His Glu Glu Gly
His Ala Arg Arg Gln Gly Pro Thr Ser Leu Met Glu Leu Pro Lys Leu
                              345
Arg Leu Ser Gly Met Thr Lys Leu Ser Ser Cys Ser Ser Pro Ala Leu
                          360
Arg Ser Val Leu Gly Thr Gly Ala Asn Gly Lys Val Pro Val Leu Arg
                       375
Pro Leu Lys Cys Ala Ala Val Asn Lys Lys Thr Asp Thr Gln Lys Asp
                   390
Ile Lys Pro His Leu Lys His Tyr His Leu Pro Thr Ile Asn Arg Lys
                                   410
Gly Gly Glu Tyr
<210> SEQ ID NO 39
<211> LENGTH: 344
<212> TYPE: PRT
<213> ORGANISM: Carassius auratus
<220> FEATURE:
<223> OTHER INFORMATION: cyclin-dependent kinase 7 (CDK7), 40kDa protein
     kinase, CDC2/CDK2, 4-activating kinase, cell division protein
     kinase 7, P40 MO15, kinase with gatekeeper Cys
<400> SEQUENCE: 39
Met Ala Leu Asp Val Lys Ser Arg Ala Lys Leu Tyr Glu Lys Leu Asp 1 \phantom{\bigg|} 10 \phantom{\bigg|} 15
Phe Leu Gly Glu Gly Gln Phe Ala Thr Val Tyr Lys Ala Arg Asp Lys
                              25
Thr Thr Asn Thr Ile Val Ala Ile Lys Lys Ile Lys Val Gly His Arg
Thr Glu Ala Lys Asp Gly Ile Asn Arg Thr Ala Leu Arg Glu Ile Lys
Leu Leu Gln Glu Leu Ser His Pro Asn Ile Ile Gly Leu Leu Asp Ala
Phe Gly His Lys Ser Asn Ile Ser Leu Leu Cys Phe Met Glu Thr Asp
```

Leu Glu Val Ile Ile Lys Asp Thr Ser Leu Val Leu Thr Pro 2 110 Ile Lys Ala Tyr Ile Leu Met Ser Leu Gln Gly Leu Glu Tyr 1 125 Asn His Trp Ile Leu His Arg Asp Leu Lys Pro Asn Asn Leu I 130 Asp Glu Asn Gly Val Leu Lys Leu Ala Asp Phe Gly Leu Ala I 155 Phe Gly Ser Pro Asn Arg Val Tyr Thr His Gln Val Val Thr 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Met His
Asn His Trp Ile Leu His Arg Asp Leu Lys Pro Asn Asn Leu I 130	
130 135 140 Asp Glu Asn Gly Val Leu Lys Leu Ala Asp Phe Gly Leu Ala 145 155	Leu Leu
145 150 155	
Phe Gly Ser Pro Asn Arg Val Tyr Thr His Gln Val Val Thr	Lys Ala 160
165 170	Arg Trp 175
Tyr Arg Ala Pro Glu Leu Leu Phe Gly Ala Arg Met Tyr Gly 180 185 190	Val Gly
Val Asp Met Trp Ala Val Gly Ser Ile Leu Ala Glu Leu Leu I 195 200 205	Leu Arg
Val Pro Phe Leu Ala Gly Asp Ser Asp Leu Asp Gln Leu Thr 0 210 215 220	Gly Ile
Phe Glu Ala Leu Gly Thr Pro Thr Glu Glu Thr Trp Pro Gly 1 225 230 235	Met Ser 240
Asn Leu Pro Asp Tyr Val Ser Phe Lys Leu Phe Pro Gly Thr 1 245 250	Pro Leu 255
Glu His Ile Phe Ser Ala Ala Gly Asp Asp Leu Leu Glu Leu 1 260 265 270	Leu Lys
Gly Leu Phe Thr Phe Asn Pro Cys Thr Arg Thr Thr Ala Ser C 275 280 285	Gln Ala
Leu Lys Met Arg Tyr Phe Ser Ile Arg Pro Gly Pro Thr Pro C 290 295 300	Gly Pro
Gln Leu Pro Arg Pro Asn Ser Ser Thr Glu Ala Leu Lys Glu I 305 310 315	Lys Glu 320
Asn Leu Leu Ile Gly Ile Lys Arg Lys Arg Asp Ser Ile Glu (Gln Gly 335
Thr Leu Lys Lys Leu Val Phe 340	
<210> SEQ ID NO 40 <211> LENGTH: 134 <212> TYPE: PRT <213> ORGANISM: Capsicum annuum <220> FEATURE: <223> OTHER INFORMATION: protein kinase homolog D3, kinas gatekeeper Cys	se with
<400> SEQUENCE: 40	
Thr Ser Gly Cys Glu Val Ala Leu Lys Arg Phe Lys Asn Cys S	Ser Ala 15
Gly Gly Asp Ser Ser Phe Ile His Glu Leu Glu Val Ile Ala 9 20 25 30	Ser Val
Arg His Val Asn Leu Leu Gly Leu Arg Gly Tyr Cys Thr Ala 35 40 45	Thr Phe
Pro Leu Glu Gly His Gln Arg Ile Ile Val Cys Asp Leu Val I	Lys His
Gly Ser Leu Tyr Asp His Leu Phe Gly Leu Arg Cys Asn Lys 165 70 75	Leu Ser 80
Trp Pro Ile Arg Gln Arg Ile Ala Ile Gly Thr Ala Arg Gly I	Leu Ala 95
Tyr Leu His Tyr Gly Ala Gln Pro Ala Ile Ile His Arg Asp 1 100 105 110	Ile Lys

-continued

Ser Ser Asn Ile Leu Leu Asp Glu Asn Phe Glu Pro Lys Val Ala Asp 120 Phe Gly Leu Ala Lys Leu 130 <210> SEQ ID NO 41 <211> LENGTH: 983 <212> TYPE: PRT <213> ORGANISM: Leishmania major <223> OTHER INFORMATION: possible serine/threonine kinase, kinase with gatekeeper Cys <400> SEQUENCE: 41 Met Glu Glu Tyr Thr Ile Lys Arg Lys Ile Gly Asp Gly Ala Gln Gly Val Val Tyr Glu Val Glu His Arg Thr Ser Lys Thr Ser Tyr Ala Met Lys Val Ile Cys Cys Thr Asp Gln Glu Gln Val Asn Met Ala Leu Lys Glu Ile Lys Val Leu Leu Gln Leu Arg His Pro Ser Ile Val Ser Tyr Val Asp Phe Phe Leu Val Phe Asn Ser Val Lys Leu Arg Arg Glu Phe Ala Ala Gln Ser Glu Gly Ala Cys Gly Ser Gly Gly Cys Gly Asn Gly 90 Gln Gln Arg Glu Gln Asp Ser Leu Phe Leu Cys Ser Leu Ser Asn Ser Glu Leu Asp His Gly Cys Ala Ala Asp Ser Gly Trp Lys Pro Ala Ala 120 Ala Glu Ala Ser Ser Asn Ala Pro Thr Gly Lys Pro Gln Ser Gly Ala 130 135 Thr Arg Val Val Pro Thr Ser Leu Leu Ser Lys His Arg Gln Gln Ala 150 Gly Ala His Trp Leu Gly Glu Glu Glu Ile Ala Val Cys Leu Val Met Glu Leu Cys Ser Asn Gly Asp Met Gln Gly Leu Val Arg Glu Thr Arg 185 Gln Glu Phe Met Lys Thr Gly Ser His Ser Ile Ala Glu Ala Gln Ala Val Ser Trp Leu Glu Gln Ala Ala Ala Leu Gln Phe Ile His Asn Lys Gly Phe Leu His Arg Asp Leu Lys Pro Thr Asn Ile Phe Phe Asp Glu Tyr Lys Asn Ile Lys Val Gly Asp Phe Gly Leu Ala Ala Thr Val Gly Leu Gly Arg Asn Ser Ala Val Gly Thr Pro Tyr Tyr Leu Ala Pro 265 Glu Arg Met Leu Gln Gln Arg Tyr Asp Gly Lys Val Asp Ile Trp Gly 280 Leu Gly Val Val Leu Leu Glu Leu Leu Thr Leu Arg Glu Gln Pro Ile Asn Ser Met Leu Leu Glu Asn Pro Lys Val Val Asp Thr Val Ile Pro 315 Gln Ile Thr Lys Met Gly Tyr Ser Thr Lys Leu Ala Thr Leu Leu Arg

												0011	C III.	aca	
				325					330					335	
Asp	Met	Leu	Gln 340	Arg	Gln	Pro	Gln	Asp 345	Arg	Pro	Thr	Pro	Ser 350	Ser	Ile
Leu	His	Arg 355	Leu	Ala	Ser	Ile	Thr 360	Ala	Thr	Ser	Pro	His 365	Pro	Gly	Met
Ser	Ala 370	Thr	Leu	Phe	Ala	Gly 375	Met	Ser	Сув	Pro	380 Lys	Leu	Thr	Glu	Ala
Leu 385	Cys	Asp	Val	Сув	Glu 390	Val	Glu	Val	Ala	Gly 395	Val	Met	Cys	Ser	Ser 400
CAa	Lys	Ala	Ala	Phe 405	CAa	Ala	Gly	Cys	Asp 410	Arg	Ala	Arg	His	Arg 415	His
His	Ser	Arg	Gln 420	Ser	His	Asp	Arg	Thr 425	Asn	Met	Ser	Ser	Ile 430	Val	Asn
Ser	Met	Asn 435	Gly	Ala	Ser	Ser	Leu 440	Pro	Leu	Ser	Ala	Thr 445	Pro	Met	Gln
Gln	Gln 450	Gln	Gln	Gln	Gln	Lys 455	Thr	Leu	Ser	Phe	Ser 460	Arg	Gly	Pro	Ser
Pro 465	Ala	Asn	Thr	Ser	Asp 470	Gln	Thr	Arg	Ala	Ser 475	Met	Gln	Asn	Ile	Val 480
Val	Phe	Pro	Ser	Ser 485	Asn	Ser	Ser	His	Ser 490	Arg	Thr	Leu	Pro	Arg 495	Glu
Arg	Glu	Met	Asn 500	Ser	Arg	Thr	Phe	Thr 505	Arg	Phe	Gln	Leu	Ala 510	Leu	Pro
Gly	Arg	Ser 515	Val	Ser	Met	Ser	Asp 520	Phe	Ser	Met	Thr	Gln 525	Gly	Leu	Gln
Gly	Pro 530	Arg	Asp	Gly	Ser	Gly 535	Ile	Asn	Ala	Ala	Val 540	Ala	Glu	Thr	Val
Leu 545	Arg	Val	Pro	Asp	Asp 550	Val	Pro	Ser	Leu	Ala 555	Gln	Ala	Leu	Arg	Val 560
Val	Glu	Ser	Met	Pro 565	His	Ile	Arg	Lys	Ile 570	Leu	Val	Ala	Gly	Asn 575	Thr
Thr	His	Thr	Val 580	Pro	Leu	Val	Leu	Thr 585	Ser	Arg	Leu	Pro	Asp 590	Ser	Ile
ГÀа	Leu	Val 595	Gly	Glu	Ser	Pro	Pro 600	Pro	Met	Leu	Glu	Val 605	Ala	Asp	Ser
Pro	Phe 610	Ala	Leu	His	CÀa			Gly			Ser 620	Val	Glu	Asn	Phe
Ile 625	Leu	Arg	His	Val	Gly 630	Arg	Phe	Cys	Phe	Lys 635	Leu	Leu	ràa	Leu	Asp 640
Thr	Asn	Leu	His	Gln 645	Thr	Asp	Ala	Asn	Ala 650	Met	Thr	Ser	Ala	Pro 655	Ala
ГÀа	Lys	Pro	Ser 660	Arg	Pro	Thr	Ala	Val 665	Ser	Ile	Thr	Gly	Gly 670	Glu	Trp
Arg	Leu	His 675	Lys	Cya	Arg	Ile	Ser 680	Cya	Val	Glu	Gly	Ser 685	Gly	Val	Thr
Val	Gly 690	Gly	Ser	ГÀа	His	Thr 695	Pro	Ser	Ser	Ala	Thr 700	Asn	Gly	Gln	Asn
Pro 705	Ser	Ala	Thr	Gly	Ala 710	Arg	Ser	Ser	Arg	Pro 715	Pro	Gln	Ser	Pro	Ser 720
Leu	Val	Ala	Arg	Ser 725	Ser	Leu	Val	Asn	Gly 730	Ala	Asp	Glu	Gly	Ala 735	Glu
Asp	Ala	Asp	Val 740	Met	Ser	Met	Glu	Pro 745	Ile	Ile	Thr	Lys	Сув 750	Ser	Phe

Ile Asp Val Thr Ala Ala Gly Ile Val Val Met Glu Lys Ser Arg Gly 760 Leu Tyr Glu Gly Asn Thr Phe Ser Gly Cys Gly Phe Ala Ala Phe Leu 775 Leu Arg Lys Asp Ala Thr Pro Arg Ile Arg Ala Asn His Ile Thr Asp Gly Ala Glu Ala Gly Ile Phe Cys Gln Asp Ala Ser Gly Leu Met Glu Tyr Asn Val Ile Ala Gln Asn Ala Gly Cys Gly Ile Val Val Lys Gly Ala Ser Ala Val Pro Val Ile Arg Lys Asn Arg Val Leu Ser Asn Val Gln Ala Gly Val Phe Cys Cys Asp Lys Ala Ala Pro Phe Val Ser Asp Asn Glu Ile Arg Gln Asn Gly Lys Ala Gly Val Leu Val Lys Thr Thr Ala Ala Pro Lys Ile Thr Arg Asn Val Ile Glu Ser Gly Lys Glu Ala 885 890 Gly Ile Tyr Ile Phe Glu Lys Gly Ala Gly Ile Ile Glu Glu Asn Arg 905 Ile Arg Gly Asn Gln Asn Ala Gly Leu Leu Val Thr Thr Gly Gly Asn 920 Pro His Val Ile His Asn Thr Ile Thr Lys Asn Ala Tyr Glu Gly Ile 935 Trp Val Cys Lys His Gly Gly Gly Thr Phe Cys Asp Asn Asp Leu Arg 950 Gly Asn Thr Lys Gly Ala Lys Asp Ile Glu Ala Asp Ser Arg Val Thr Trp Val Gly Asn Val Glu Gln 980 <210> SEQ ID NO 42 <211> LENGTH: 419 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <223> OTHER INFORMATION: MOK protein kinase, kinase with gatekeeper Cys <400> SEQUENCE: 42 Met Lys Asn Tyr Lys Ala Ile Gly Lys Ile Gly Glu Gly Thr Phe Ser Glu Val Met Lys Met Gln Ser Leu Arg Asp Gly Asn Tyr Tyr Ala Cys Lys Gln Met Lys Gln Arg Phe Glu Ser Ile Glu Gln Val Asn Asn Leu 40 Arg Glu Ile Gln Ala Leu Arg Arg Leu Asn Pro His Pro Asn Ile Leu Met Leu His Glu Val Val Phe Asp Arg Lys Ser Gly Ser Leu Ala Leu Ile Cys Glu Leu Met Asp Met Asn Ile Tyr Glu Leu Ile Arg Gly Arg Arg Tyr Pro Leu Ser Glu Lys Lys Ile Met His Tyr Met Tyr Gln Leu 105 Cys Lys Ser Leu Asp His Ile His Arg Asn Gly Ile Phe His Arg Asp 120

-continued

Val Lys Pro Glu Asn Ile Leu Ile Lys Gln Asp Val Leu Lys Leu Gly 135 Asp Phe Gly Ser Cys Arg Ser Val Tyr Ser Lys Gln Pro Tyr Thr Glu Tyr Ile Ser Thr Arg Trp Tyr Arg Ala Pro Glu Cys Leu Leu Thr Asp Gly Phe Tyr Thr Tyr Lys Met Asp Leu Trp Ser Ala Gly Cys Val Phe 185 Tyr Glu Ile Ala Ser Leu Gln Pro Leu Phe Pro Gly Val Asn Glu Leu Asp Gln Ile Ser Lys Ile His Asp Val Ile Gly Thr Pro Ala Gln Lys Ile Leu Thr Lys Phe Lys Gln Ser Arg Ala Met Asn Phe Asp Phe Pro Phe Lys Lys Gly Ser Gly Ile Pro Leu Leu Thr Thr Asn Leu Ser Pro 250 Gln Cys Leu Ser Leu Leu His Ala Met Val Ala Tyr Asp Pro Asp Glu 265 Arg Ile Ala Ala His Gln Ala Leu Gln His Pro Tyr Phe Gln Glu Gln 280 Arg Lys Thr Glu Lys Arg Ala Leu Gly Ser His Arg Lys Ala Gly Phe Pro Glu His Pro Val Ala Pro Glu Pro Leu Ser Asn Ser Cys Gln Ile 310 315 Ser Lys Glu Gly Arg Lys Gln Lys Gln Ser Leu Lys Gln Glu Glu Asp 330 Arg Pro Lys Arg Arg Gly Pro Ala Tyr Val Met Glu Leu Pro Lys Leu Lys Leu Ser Gly Val Val Arg Leu Ser Ser Tyr Ser Ser Pro Thr Leu 360 Gln Ser Val Leu Gly Ser Gly Thr Asn Gly Arg Val Pro Val Leu Arg Pro Leu Lys Cys Ile Pro Ala Ser Lys Lys Thr Asp Pro Gln Lys Asp Leu Lys Pro Ala Pro Gln Gln Cys Arg Leu Pro Thr Ile Val Arg Lys Gly Gly Arg <210> SEQ ID NO 43 <211> LENGTH: 278 <212> TYPE: PRT <213 > ORGANISM: Trichomonas vaginalis <220> FEATURE: <223> OTHER INFORMATION: probable protein kinase cdc2/cdc28-related, kinase with gatekeeper Cys <400> SEQUENCE: 43 Met Asp Leu Ser Ala Tyr His Lys Asp Met Lys Leu Gly Glu Gly Thr 10 Tyr Gly Ser Val Phe Arg Ala Thr His Ile Pro Thr Asp Gln Pro Val 25 Val Leu Lys Leu Val Arg Met Asp Leu Glu Glu Asp Gly Ile Pro Pro 40 Ser Ser Val Arg Glu Val Cys Ile Leu Lys Ser Leu Asn His Pro Asn

Ile 65	Leu	His	Phe	Arg	Glu 70	Val	Ile	Cys	Lys	Asp 75	Ser	Lys	Ile	Ile	Met 80
Val	Cys	Glu	Phe	Met 85	Asp	Met	Asp	Leu	Dys 1	Asn	Phe	Leu	Ser	Lys 95	Arg
Arg	Met	Asn	Pro 100	Asp	Leu	Leu	Arg	Ser 105	Tyr	Ala	Phe	Gln	Leu 110	Leu	CÀa
Gly	Thr	Tyr 115	Tyr	Leu	His	Arg	Ile 120	Gly	Ile	Val	His	Arg 125	Asp	Ile	ГЛа
Pro	Glu 130	Asn	Ile	Leu	Ile	Asp 135	Arg	Asn	Gly	Leu	Leu 140	Lys	Leu	Gly	Asp
Phe 145	Gly	Thr	Ala	Ala	Tyr 150	Cys	Phe	His	Pro	Ile 155	Pro	Tyr	Asp	Ile	Glu 160
Glu	Ile	Lys	Thr	Pro 165	Trp	Tyr	Leu	Ala	Pro 170	Glu	Ile	Leu	Ile	Asn 175	Ala
Pro	Ala	His	Gly 180	Thr	Glu	Ile	Asp	Ile 185	Trp	Ser	Ile	Gly	Cys 190	Val	Ile
Ala	Glu	Met 195	Ala	Arg	Gly	Asn	Leu 200	Phe	Met	Gly	Asp	Ser 205	Gln	Val	Asp
Gln	Leu 210	Ile	Lys	Ile	Thr	Glu 215	Val	Leu	Gly	Ile	Pro 220	Ser	Glu	Glu	Asp
Tyr 225	Pro	Asp	Phe	Tyr	Lys 230	Tyr	Lys	Ile	Asn	Asn 235	Met	Pro	Cya	Met	Lys 240
Lys	Glu	ГÀа	Pro	Asp 245	Phe	Asn	Ser	Phe	Phe 250	Pro	Gly	Val	Asp	Pro 255	Glu
Leu	Val	Asp	Leu 260	Ile	Ser	Lys	Met	Leu 265	Gln	Met	Asn	Pro	Glu 270	His	Arg
Ile	Asn	Ala 275	Gln	Thr	His										
<211 <212 <213	0> SI L> LI 2> TY	ENGTI	I: 24												
<223	0 > FE 3 > O	EATUF CHER	RE: INFO	ORMA:	rion:	put	ativ	iparı ve pı eepei	otei		inase	e, Se	er/Th	ır pı	roteim
	0 > FE 3 > O	EATUF CHER Lnase	RE: INFO e, ki	DRMA: inase	rion:	put	ativ	- 7e pi	otei		inase	e, S€	er/Th	ır pı	rotein
<400	0 > FI 3 > O1 ki 0 > SI	EATUF CHER Lnase EQUEN	RE: INFO e, ki	ORMAT inase 44	rion: e wit	put hga	ativ ateke	re pi eepei	rotei Cys	3				nr pi Arg 15	
<400 Met 1)> FI 3> O ki)> SI Phe	EATUF THER inase EQUEN	RE: INFO e, ki ICE: Val	DRMAS inase 44 Glu 5	rion: e wit Leu	: put th ga	ativ ateke Asn	re pi eepei Arg	rotei Cys Ser 10	Gly	Tyr	Lys	Lys	Arg	Lys
<400 Met 1 Lys	0> FI 3> 07 ki 0> SI Phe Lys	EATUR THER inase EQUEN Ser Lys	RE: INFO e, ki NCE: Val Trp 20	DRMAT inase 44 Glu 5 Asn	rion: e wit Leu Asn	: put th ga Glu Lys	ativ Asn Ser	ve preeper Arg Thr	Ser 10	Gly Gln	Tyr Asp	Lys Lys	Lys Phe 30	Arg 15	Lys Asn
<400 Met 1 Lys Lys	D> FI B> OT ki D> SI Phe Lys Asp	EATUR THER Inase EQUEN Ser Lys Ile 35	RE: INFO e, ki NCE: Val Trp 20	ORMAT inase 44 Glu 5 Asn Ser	rion: E wit Leu Asn Glu	: put h ga Glu Lys Glu	Asn Ser Lys	Thr 25	Ser 10 Gly	Gly Gln Gly	Tyr Asp Leu	Lys Lys Asp 45	Lys Phe 30 Ile	Arg 15 Thr	Lys Asn Cys
<400 Met 1 Lys Lys Gly	D> FE 3> OT ki D> SE Phe Lys Asp His 50	EATUR THER inase SQUEN Ser Lys Ile 35 Asn	RE: INFO e, ki NCE: Val Trp 20 Ile	DRMATinase 44 Glu 5 Asn Ser	FION: Leu Asn Glu Gly	Glu Lys Glu Asp	Asn Ser Lys 40 Val	Arg Thr 25 Glu Gln	Ser 10 Gly Glu	Gly Gln Gly Asp	Tyr Asp Leu Gly 60	Lys Lys Asp 45 Thr	Lys Phe 30 Ile	Arg 15 Thr	Lys Asn Cys Ile
<400 Met 1 Lys Lys Gly Asn 65	O> FI 3> OT ki 20> SI Phe Lys Asp His 50	EATUR THER Inase Inase Ser Lys Ile 35 Asn	RE: INFC e, ki NCE: Val Trp 20 Ile Ile	ORMA: inase 44 Glu 5 Asn Ser Leu	Leu Asn Glu Lys 70	: put h ga Glu Lys Glu Asp 55	Asn Ser Lys 40 Val	Arg Thr 25 Glu Gln Leu	Ser 10 Gly Tyr	Gly Gln Gly Asp Tyr 75	Tyr Asp Leu Gly 60	Lys Lys Asp 45 Thr	Lys Phe 30 Ile Tyr	Arg 15 Thr Glu	Lys Asn Cys Ile Glu 80
<400 Met 1 Lys Lys Gly Asn 65 Glu	O)> FF 3> O) ki 3> O) ki O)> SF Phe Lys Asp His 50 Glu	EATUR THER Inase CQUEN Ser Lys Ile 35 Asn Gln	RE: INFO e, ki VAL Trp 20 Ile Ile VAL	CRMA: Inase 44 Glu 5 Asn Ser Leu Lys 85	Leu Asn Glu Gly Lys 70 Asp	: put h ga Glu Lys Glu Asp 55 Asn	Asn Ser Lys 40 Val Ser Asn	ve preeper Arg Thr 25 Glu Gln Leu Ile	Ser 10 Gly Glu Tyr Phe Ile 90	Gly Gln Gly Asp Tyr 75	Tyr Asp Leu Gly 60 Phe	Lys Lys Asp 45 Thr Lys	Lys Phe 30 Ile Tyr Cys	Arg 15 Thr Glu Asn Lys	Lys Asn Cys Ile Glu 80 Arg
<400 Met 1 Lys Gly Asn 65 Glu Lys	O)> FF 3> OT k: K: Phe Lys Asp His 50 Glu	EATUHER (Inase Inase Ina	RE: INFC Pe, ki Val Trp 20 Ile Ile Val Leu Asp	ORMA: nase 44 41 5 Asn Ser Leu Lys Lys 85	FION Leu Asn Glu Gly Lys 70 Asp Asn	: put th ga Glu Lys Glu Asp 55 Asn Gly	Asn Ser Lys 40 Val Ser Asn	ve preeper Arg Thr 25 Glu Gln Leu Gly 105	Ser 10 Gly Glu Tyr Phe Ile 90 Asp	Gly Gln Gly Asp Tyr 75 Leu Asp	Tyr Asp Leu Gly 60 Phe Asp	Lys Asp 45 Thr Lys Asp	Lys Phe 30 Ile Tyr Cys Lys Ile 110	Arg 15 Thr Glu Asn Lys Asn 95	Lys Asn Cys Ile Glu 80 Arg
<400 Met 1 Lys Lys Gly Asn 65 Glu Lys	O)> FF 3> OT k: k: C)> SF Phe Lys Asp His 50 Glu Ile Val	EATUHER (Inase inase ina	RE: INFC inFC inFC inFC inFC inFC inFC inFC in	ORMA: inase 44 Glu 5 Asn Ser Leu Lys 85 Ile Ile	Leu Asn Glu Gly Lys 70 Asp Asn	E put th ga Glu Lys Glu Asp 55 Asn Gly Ile	Asn Ser Lys 40 Val Ser Asn Thr	re present and the present and	Ser 10 Gly Glu Tyr Phe Ile 90 Asp	Gly Gln Gly Asp Tyr 75 Leu Asp	Tyr Asp Leu Gly 60 Phe Asp Lys	Lys Lys Asp 45 Thr Lys Asp Asp	Lys Phe 30 Ile Tyr Cys Lys Lys Gly	Arg 15 Thr Glu Asn Lys Asn 95 Lys	Lys Asn Cys Ile Glu 80 Arg Val

	130					135					140				
Ile 145	Ile	Phe	Asp	Val	Asp 150	Glu	Ile	Leu	Ile	His 155	Gln	His	Asn	Thr	Ser 160
Asn	Ser	Asn	Ile	Tyr 165	Ile	Asn	Сув	Asn	Asp 170	Asn	Asn	Asn	Asp	Ile 175	Arg
Asn	Ser	Ser	Asn 180	Val	Gln	His	Tyr	Tyr 185	Asn	Asp	ГÀа	Ile	Lys 190	Glu	Asn
Ile	Asn	Lys 195	Gln	Asn	Lys	Lys	Tyr 200	Val	Leu	Ile	Asn	Asp 205	Tyr	Ile	Asn
Asn	Lys 210	Tyr	Ile	Leu	Ser	Lys 215	Asn	Lys	Thr	Cys	Lys 220	Ile	Asn	ГÀа	Gly
Lys 225	Lys	Leu	Ile	Lys	Lys 230	Lys	Lys	Val	Asn	Asn 235	Ile	Ser	Arg	Arg	Arg 240
Asn	His	Ile	Leu	Tyr 245	Lys	Cys	Arg	Asn	Lys 250	Leu	Tyr	Asn	Gly	Asn 255	Val
Phe	Ser	Asp	Asp 260	Ile	Ile	Lys	Ser	Glu 265	Val	Asn	Val	CAa	Asn 270	Ser	Leu
Thr	Val	Leu 275	His	Lys	Asn	Tyr	Asn 280	Ile	Asn	Met	Asp	Asn 285	Tyr	Leu	Asp
Asp	Asn 290	Ile	His	Thr	Asn	Asn 295	Ser	Asn	Ile	Tyr	300	Ile	Asn	Tyr	Thr
Asn 305	Glu	Asn	Val	Ile	Asn 310	Ser	Thr	Cys	Arg	Tyr 315	Tyr	Pro	Ile	Gly	Asn 320
Asn	Asn	Thr	Leu	Ser 325	Lys	Asp	Glu	Val	Thr 330	Lys	Ser	Ser	Ser	1335	Ile
Asn	Ser	Leu	Ser 340	Tyr	Phe	Asp	Asp	Ile 345	Ile	Asn	Val	Asn	Lys 350	Asn	Asp
Ile	Pro	Ile 355	Leu	His	Asp	Lys	Glu 360	Asn	Ile	Asn	Ile	Ile 365	Ser	Asn	ГЛа
Glu	Ser 370	Сув	His	Lys	Asp	Glu 375	Lys	Glu	Glu	Glu	380 FÀa	Tyr	Ile	Met	Tyr
Asn 385	Ser	Asn	Leu	Val	Glu 390	Glu	Lys	Lys	Gln	Lys 395	ГÀа	Met	Ile	Trp	Asn 400
Ser	Leu	Asn	Val	Leu 405	Pro	Ile	Asp	Ile	Leu 410	Leu	ГÀа	Asn	Gly	His 415	Asp
Glu	Ile	Asn	Lys 420	Glu	Ile	CAa	ГÀз	Lys 425	Lys	Lys	ГÀа	Ser	Phe 430	Phe	Ser
Gln	Asn	Asp 435	Ile	Lys	Ser	Lys	Met 440	Leu	Tyr	Asn	Asn	Lys 445	Ser	Tyr	Ser
Lys	Ser 450	Glu	Lys	Val	Leu	Tyr 455	Thr	Asn	Asn	Lys	Asn 460	Ser	Asn	Thr	Phe
Ile 465	Pro	Ile	Phe	Phe	Leu 470	Asn	Lys	Val	Gly	Asp 475	ГÀЗ	Phe	Lys	Asn	Ser 480
Glu	Asn	Ile	Tyr	Asp 485	Met	Tyr	Asn	Asn	Lys 490	Lys	Asn	Val	Tyr	Ile 495	His
Asp	Lys	Lys	Ile 500	Tyr	Thr	Asn	Met	Tyr 505	Ser	Asn	Lys	Leu	Lys 510	Gln	Lys
His	Tyr	Tyr 515	Ser	Thr	Ser	Asn	Ile 520	Asn	Leu	Leu	Tyr	Asn 525	Asn	Ile	Gly
Lys	Val 530	Leu	Asp	Asn	Gly	Leu 535	His	Leu	Ser	Asn	Asn 540	Met	Tyr	Сув	Arg
Leu 545	Asn	Ser	Asn	Pro	Pro 550	Tyr	Lys	Ser	Ile	Ser 555	Leu	Ile	Asn	Asn	Asn 560

Val	Phe	Phe	Tyr	Lув 565	Гуз	Arg	Lys	Ser	Asn 570	Ser	Asn	Asn	Asn	Asn 575	Asn
Asn	Asn	Asn	Ile 580	Ser	Ser	Ser	Ser	Ser 585	Ser	Ser	Ser	Lys	Lys 590	Asn	His
Val	Ile	Ile 595	Asn	Lys	Lys	Ile	Ser 600	Ser	Tyr	Asn	Ile	His 605	Tyr	Lys	Glu
Arg	Lys 610	Asp	Ser	Phe	Lys	Glu 615	Asn	Phe	Leu	Phe	Phe 620	ГÀа	Glu	Lys	Ile
Leu 625	Pro	Ser	Lys	Lys	Asp 630	Thr	Cys	Val	Phe	Asn 635	Glu	Arg	Gln	Lys	Asp 640
Leu	Phe	Glu	Lys	Ser 645	Asn	Glu	His	Ile	Lys 650	Сув	Val	Ser	Ser	Phe 655	Asn
Asn	Thr	Ser	Asp 660	Asp	Ile	Ser	Ser	His 665	Ser	Ser	Val	Asn	Lys 670	Lys	Glu
Pro	Phe	Phe 675	Ala	Leu	Lys	Asn	Asn 680	Ser	Ile	Arg	His	Ile 685	Pro	Lys	Glu
Asn	Asn 690	Ile	Ile	Tyr	Thr	Ser 695	Gly	Lys	Ser	Phe	Asn 700	His	Val	Gln	Asp
Lys 705	Glu	Lys	Thr	Val	Leu 710	Leu	Lys	Lys	ГÀв	Lys 715	Glu	Ile	Asn	Asp	Lys 720
Asn	Thr	Phe	Ser	Ser 725	GÀa	Leu	Ile	Asn	His 730	Asn	Ile	Thr	Thr	Tyr 735	Thr
Leu	Gln	Asn	Gly 740	Val	Asn	Lys	Asn	Leu 745	Asn	Met	Leu	Gly	Ile 750	Arg	Asp
Ser	Ile	Tyr 755	ГÀз	Ile	Asp	Glu	Lys 760	Asn	Asn	Met	Leu	Lys 765	Glu	CÀa	Tyr
Asn	Gly 770	Asn	Asn	Asp	Ser	Asn 775	Asn	ГЛа	ГÀа	Lys	Lys 780	ГÀа	ГÀз	ГÀз	ГЛа
Leu 785	Ser	Phe	Ser	CAa	Asp 790	Ile	Ile	Asn	Asp	Asn 795	Ile	Thr	Pro	Tyr	Glu 800
Ser	Asp	ГЛа	Glu	805	Asn	Asn	Ser	Asn	Asn 810	Ile	ГЛа	Ser	Met	Asp 815	Ile
Phe	Asn	Tyr	Val 820	Lys	Arg	Lys	Ser	Asn 825	Leu	Tyr	Asn	Asn	Leu 830	Ser	Ser
Asn	Arg	Asp 835	Ser	Thr	Val	Asp	Met 840	His	Asn	Lys	Tyr	Asn 845	Ser	Glu	Glu
Tyr	Ile 850	Asn	Ile	Gln	Arg	Thr 855	Asn	Lys	Ile	Tyr	Glu 860	Leu	Ser	Asn	Lys
Arg 865	Ile	Arg	Asn	Tyr	Lys 870	Leu	Tyr	Ser	Met	Asp 875	Glu	Ile	Phe	ГÀа	Val 880
Ser	Leu	Lys	Glu	885	rys	Tyr	Ile	Asp	Asn 890	Ile	Ser	Asn	Asn	Met 895	Glu
Arg	Val	Thr	Tyr 900	ГÀа	Asn	Glu	Met	Ile 905	Asn	Glu	Lys	Ile	Ser 910	Lys	Met
Asp	Asp	Ile 915	Leu	Tyr	Pro	Cys	Asp 920	Lys	Asn	Lys	Ser	Leu 925	Asn	Met	Ser
Сув	Pro 930	Val	Ile	Ile	Glu	Asn 935	Asn	Ile	Ser	Arg	Glu 940	Glu	Asn	Glu	Lys
Asn 945	Ser	Ser	Val	Ile	Leu 950	Asn	Lys	Lys	Lys	Asn 955	Glu	Asn	Met	Phe	Asn 960
Сув	Val	Gly	Arg	Leu 965	His	Cys	His	Met	Gly 970	Lys	Met	Asn	Asn	Gln 975	Asp

Asn	Ile	Tyr	Asp 980	Gln (Gly A	Asn I		ys L <u>y</u> 35	γs Α	sn G	lu Glı	1 Gl: 99:		e Thr
Lys	His	Asp 995	Glu	Tyr :	Ile S		rg (000	Glu (Glu 1	Lys 1		/s '	Tyr 1	Asn Ser
Lys	Cys 1010		Arg	Asn	Phe	Asp 1015	Asp	Tyr	Lys	Tyr	Glu 1020	Gln	Val	Leu
Ser	Tyr 1025		Thr	Leu	Asp	Glu 1030	Asp	Lys	FÀa	FÀa	Asn 1035	Asp	Met	Asn
Asn	Leu 1040		Asp	Met	Asn	Asn 1045	Glu	Ala	Ile	Ile	Glu 1050	Thr	Val	Asn
Gly	Val 1055		Asn	Asn	Ile	Ile 1060	Leu	Asp	Arg	Lys	Asp 1065	Asn	Asn	Ser
Arg	Lys 1070	_	Met	Glu	Lys	Glu 1075	Met	Glu	ГÀа	Glu	Met 1080	Glu	Lys	Lys
Met	Glu 1085		Glu	Met	Glu	Lys 1090	Val	Met	Glu	ГÀа	Glu 1095	Met	Glu	Lys
Val	Met 1100		. Lys	Glu	Val	Glu 1105	ГÀа	Glu	Leu	ГÀа	Asn 1110	Glu	Met	Asn
Asn	Arg 1115		Asn	Asn	Arg	Met 1120	Asn	Asn	Glu	Met	Lys 1125	Asn	Glu	Ile
Asn	Ile 1130		Lys	Asn	Asn	Glu 1135	Ile	Tyr	Val	Asp	Asn 1140	Asp	ГÀа	Glu
Leu	Glu 1145		· Val	Asn	Glu	Glu 1150	-	Lys	Leu	Ile	Tyr 1155	Pro	Phe	Asn
Tyr	Glu 1160		Asp	Val	His	Lys 1165	Asn	Met	Asn	Met	Ser 1170	Ile	Asn	Ile
Asn	Asn 1175		Lys	Asp	Asp	Tyr 1180	Asn	Asn	Ile	Leu	Lys 1185	Glu	Tyr	Val
Asp	Asn 1190		Cys	Leu	Ala	Gln 1195		Glu	Glu	Asn	Ile 1200	Phe	Arg	Pro
Leu	Phe 1205		. Leu	Asn	ГÀа	Lys 1210	Asp	Lys	Val	Trp	Lys 1215	Arg	Phe	Asn
Ile	Lys 1220		. Asn	Ile	ГÀа	Thr 1225	Ile	Ile	His	Asn	Glu 1230	Glu	Met	Lys
Arg	Ile 1235		Gln	Thr	Ile	Asn 1240		Asn	Val	Phe	Pro 1245	Ile	Tyr	Asn
	1250	_	-			1255					Leu 1260		-	
Phe	Pro 1265	-	Asn	Asp	Leu	Phe 1270	Lys	Leu	Ser	Tyr	Lys 1275	Val	Ser	Met
	Asn 1280					1285				-	His 1290		Asn	Asn
Asn	Tyr 1295	_	Tyr	Met	Asn	Lys 1300	Leu	Tyr	Asn	Gln	Asn 1305	Ile	Tyr	Thr
Leu	Lys 1310	-	Gln	Val	Ala	Asn 1315	Ile	Asp	Asn	Asp	His 1320	His	Ile	Сув
Lys	Lys 1325	_	Gly	Gly	Leu	Asp 1330	Tyr	Ile	Asn	Met	Asn 1335	Ile	Ser	Lys
Glu	Cys 1340		Asn	Arg	ГÀв	Asp 1345	Lys	Thr	Tyr	Leu	Asn 1350	Lys	Ile	Phe
His	Tyr 1355	_	Lys	Lys	ГЛа	Asp 1360	Ala	Arg	Phe	Phe	Ile 1365	Asn	Asp	Glu
Ile	Gly	Ser	Asn	Asp	Tyr	Met	Tyr	Asp	Ile	Lys	Lys	Lys	Tyr	Ser

_														
	1370					1375					1380			
Asn	Asp 1385	Glu	Asn	Asn	Tyr	Lys 1390	Leu	Asn	Glu	Lys	Met 1395	Asn	Ile	Ser
Met	Ser 1400	Asn	Asp	Glu	Asp	Met 1405	Ile	Pro	Thr	Leu	Asn 1410	Ser	Glu	His
Gly	Asn 1415	Asn	Phe	Pro	Ser	Cys 1420	Gln	Pro	Asn	Leu	Leu 1425	Glu	Lys	Lys
Ser	Thr 1430	Tyr	Ile	Asp	Leu	Asn 1435	Leu	Tyr	Asp	Ser	Asn 1440	Ser	Met	Asp
Asp	Phe 1445	Thr	Glu	Glu	Lys	Tyr 1450	Asn	Phe	Val	Asn	Asn 1455	Glu	Asn	Asp
Leu	Phe 1460	Asn	Thr	Lys	Arg	Trp 1465	Lys	Phe	Asn	Phe	Ser 1470	Lys	Gly	Lys
Asn	Leu 1475	Phe	Asn	Asn	Lys	Phe 1480	Phe	Asn	Val	Ser	Asn 1485	Glu	Asp	Gly
Val	Phe 1490	Ser	Phe	Phe	Lys	Asn 1495	Met	Asn	Leu	Phe	Arg 1500	Glu	Leu	Asn
ГЛа	Ser 1505	Asn	Asn	Ser	Leu	Lys 1510	Leu	Glu	Ser	Val	Lys 1515	Asn	Ser	Asn
Asn	Asn 1520	CAa	Ser	Asn	Asn	Lys 1525	Gly	Asp	Asp	Asn	Ile 1530	Gly	Asn	Met
Glu	Asn 1535	Met	Asn	Thr	Thr	Asn 1540	Val	Thr	Ile	Ala	Ser 1545	Asp	Glu	His
Ile	Ser 1550	Thr	ГÀа	Gly	Asp	Ile 1555	His	Asp	Glu	Ser	Phe 1560	Ser	Arg	Asp
Asp	Asn 1565	Asp	Cys	Ile	Leu	Leu 1570	Lys	Ile	Glu	Gly	Arg 1575	Ser	Lys	ГÀа
Tyr	Ser 1580	Asp	Ile	Thr	Leu	Tyr 1585	Asn	Glu	Asp	Lys	Ser 1590	Asn	Leu	Glu
Asn	Asp 1595	Asn	Glu	Thr	Ile	Asn 1600	Glu	Tyr	Glu	Asn	Val 1605	Сув	Ser	Asn
Ile	Asp 1610	Val	Asn	Glu	Trp	Glu 1615	Asp	Lys	Val	Asn	Gly 1620	Thr	CÀa	Asn
Ser	Val 1625	Gly	Asp	Lys	Glu	Thr 1630	Glu	Lys	Asn	Asn	Glu 1635	Lys	Asn	Asn
Glu	Lys 1640	Asn	Asn	Glu	Lys	Asn 1645	Asn	Glu	Lys	Asn	Asn 1650	Glu	Lys	Asn
Asn	Glu 1655	ràa	Asn	Asn	Glu	Lys 1660	Asn	Asn	Glu	ГÀа	Asn 1665	Asn	Glu	Glu
Asn	Asn 1670	Glu	Gly	Asn	Asn	Glu 1675	Glu	Asn	Asn	Glu	Glu 1680	Asn	Asn	Glu
Glu	Asn 1685	Asn	Glu	Glu	Asn	Asn 1690	Asp	Ile	Glu	ГÀа	Asn 1695	Asp	Ile	Lys
Asp	Asn 1700	Asn	Ser	Gly	Gln	Val 1705	Lys	Glu	Asn	Ile	Ile 1710	Val	Met	Asn
Asn	Thr 1715	Asn	Asn	Met	Asp	Val 1720	Asp	Asn	Asp	Asp	Asn 1725	Asn	Asn	Asn
Tyr	Asn 1730	Asn	Val	Ser	Thr	Asp 1735	Glu	Gly	Ile	Asp	Ile 1740	Ile	Lys	Asn
Ile	Lys 1745	Ser	Glu	Met	Asn	Asp 1750	Tyr	Ile	Tyr	Asn	Asp 1755	Asn	Ile	Met
Ile	Lys 1760	Ile	Asn	Asn	Lys	Ser 1765	Ile	Asp	Leu	Met	Asn 1770	Ile	Lys	Asn

Gln	Lys 1775	Asn	Glu	Pro	Phe	Leu 1780		Tyr	Thr	Asn	Glu 1785		Asp	Ile
His	Met 1790	Lys	Ser	Asn	Ser	Ser 1795		Asn	Val	Asn	Asp 1800		Met	Asn
Leu	Phe 1805	Asn	Asn	Asn	Glu	Lys 1810		Glu	Lys	Asn	Asn 1815		Ser	Leu
Asn	Asp 1820	Leu	Leu	Tyr	Lys	Arg 1825		Glu	Glu	Leu	Asp 1830		Glu	ГÀа
Ile	Ser 1835	Glu	Tyr	Lys	Asp	Thr 1840		Leu	Thr	Asn	Asn 1845		Phe	Glu
His	Ile 1850	Ala	Lys	Arg	Ile	Asn 1855		Ile	Leu	Asn	Asp 1860		Ile	Glu
Phe	Phe 1865	Gln	Lys	His	Thr	Tyr 1870		His	Asn	Gly	Tyr 1875	Gly	Asn	Val
Gln	Val 1880	CAa	Lys	Lys	Asn	Lys 1885		Lys	Leu	Glu	Lys 1890		Lys	Leu
Lys	Lys 1895	Trp	Ser	CÀa	Ile	Tyr 1900		Ile	Asn	Lys	Ile 1905	Val	Arg	Lys
Gly	Ala 1910	His	Gly	Val	Val	Phe 1915		Ala	Trp	Arg	Ser 1920		Asn	Val
Asp	Phe 1925	Phe	Asn	His	Ser	Phe 1930	Phe	Glu	Asn	Leu	Asn 1935		Glu	Asn
ГÀа	Lys 1940	ГÀа	Gly	Tyr	Ile	Asp 1945	Glu	Thr	Asn	Val	Asn 1950	Glu	Asn	Tyr
Glu	Ser 1955	Asp	Asn	Glu	Tyr	Asp 1960		Asp	Glu	Asp	Asp 1965	Thr	Glu	Ser
Asp	Asn 1970	Asp	Asp	Glu	Gln	Asn 1975		Glu	Asn	Glu	Arg 1980	Gly	Asp	Glu
ГÀз	Asp 1985	Gly	Tyr	Glu	Glu	Met 1990	Asn	Gly	Gly	Asp	Lув 1995	Asn	Glu	Glu
Met	Asn 2000	Gly	Gly	Asp	Lys	Asn 2005	Glu	Glu	Met	Asn	Val 2010	Gly	Asp	ГÀв
Asn	Gly 2015	Gly	Ile	Asn	Glu	Glu 2020	His	ГÀа	Asn	Glu	Gly 2025	Ile	Asn	Glu
Glu	His 2030	ràa	Asp	Glu	Leu	Ile 2035	Asn	Lys	Glu	His	Lys 2040	Asn	Glu	Arg
Ile	Asn 2045	Glu	Glu	His	Lys	Asn 2050	Glu	Arg	Ile	Asn	Glu 2055	Glu	His	ГÀа
Asn	Glu 2060	Gly	Ile	Asn	Glu	Glu 2065	His	Lys	Asn	Glu	Gly 2070	Ile	Asn	Glu
Glu	His 2075	Lys	Asn	Glu	Arg	Ile 2080	Asn	Glu	Glu	His	Lys 2085	Asn	Glu	Gly
Ile	Asn 2090	Lys	Leu	Thr	Tyr	His 2095	Asn	Met	Asn	ГÀа	Asn 2100	Asn	Ile	Ser
Asn	Glu 2105	Asn	Asn	Tyr	Asn	Asp 2110	Asp	Asp	Ser	Tyr	Asp 2115	Glu	Asp	Asn
Leu	Val 2120	Ser	Leu	Lys	Ile	Ile 2125	Asn	Leu	ГЛа	Tyr	Leu 2130	Ser	Lys	Lys
Asn	Ser 2135	Leu	Lys	Asn	Ile	Leu 2140	Arg	Glu	Val	Asn	Phe 2145	Leu	Lys	Met
СЛа	Glu 2150	His	Pro	Asn	Val	Val 2155	Lys	Tyr	Phe	Glu	Ser 2160	Phe	Phe	Trp

Pro	Pro 2165		Tyr	Leu	Val	Ile 2170	Val	Cys	Glu	Tyr	Leu 2175	Ser	Gly	Gly
Thr	Leu 2180		Asp	Leu	Tyr	Lys 2185	Asn	Tyr	Gly	Arg	Ile 2190	Ser	Glu	Asp
Leu	Leu 2195	Val	Tyr	Ile	Leu	Asp 2200	-	Val	Leu	Asn	Gly 2205	Leu	Asn	Tyr
Leu	His 2210	Asn	Glu	Cys	Ser	Ser 2215	Pro	Leu	Ile	His	Arg 2220	Asp	Ile	Lys
Pro	Thr 2225	Asn	Ile	Val	Leu	Ser 2230	Lys	Asp	Gly	Ile	Ala 2235	Lys	Ile	Ile
Asp	Phe 2240	Gly	Ser	CAa	Glu	Glu 2245	Leu	Lys	Asn	Ser	Asp 2250	Gln	Ser	ГÀз
Glu	Leu 2255	Val	Gly	Thr	Ile	Tyr 2260	Tyr	Ile	Ser	Pro	Glu 2265	Ile	Leu	Met
Arg	Thr 2270	Asn	Tyr	Asp	Cys	Ser 2275	Ser	Asp	Ile	Trp	Ser 2280	Leu	Gly	Ile
Thr	Ile 2285	Tyr	Glu	Ile	Val	Leu 2290	CÀa	Thr	Leu	Pro	Trp 2295	Lys	Arg	Asn
Gln	Ser 2300	Phe	Glu	Asn	Tyr	Ile 2305	ГЛа	Thr	Ile	Ile	Asn 2310	Ser	Ser	Pro
Lys	Ile 2315	Asn	Ile	Thr	Glu	Gly 2320	Tyr	Ser	Lys	His	Leu 2325	СЛа	Tyr	Phe
Val	Glu 2330	-	CAa	Leu	Gln	Lys 2335	ГÀв	Pro	Glu	Asn	Arg 2340	Gly	Asn	Val
Lys	Asp 2345		Leu	Asn	His	Lys 2350	Phe	Leu	Ile	rys	Lys 2355	Arg	Tyr	Ile
Lys	Lys 2360		Pro	Ser	Ser	Ile 2365	Tyr	Glu	Ile	Arg	Asp 2370	Ile	Leu	ГÀа
Ile	Tyr 2375	Asn	Gly	Lys	Gly	Lys 2380	Thr	Asn	Ile	Phe	Arg 2385	Asn	Phe	Phe
Lys	Asn 2390	Leu	Phe	Phe	Phe	Asn 2395	Asp	Lys	Asn	Lys	Lys 2400	Lys	Lys	Pro
Asn	Lys 2405	Met	Ile	Ser	Ser	Lys 2410	Ser	Cys	Asp	Ala	Glu 2415	Met	Phe	Phe
Glu	Gln 2420	Leu	Lys	Arg	Glu	Asn 2425	Phe	Asp	Phe	Phe	Glu 2430	Ile	ГÀз	Leu
Lys	Asp 2435	Asp	Glu	Asn	Ser	Arg 2440	Ser	Leu	Asn	Thr	Phe 2445	Asn	Ile	Asn
Ile	Ser 2450	rys	Glu	Arg	Asp	Asp 2455	Ile	Ser	Tyr	Ser	Ser 2460	Leu	Asn	Leu
Glu	Lys 2465	Ile	ГÀа	Glu	His	Ser 2470	Leu	Asn	Met	Val	Ala 2475	Ser	Val	Val
Gly	Thr 2480	Glu	Gln	Ser	Gln	Lys 2485								
<213 <213 <213 <220	0 > SE0 1 > LE1 2 > TY1 3 > OR0 0 > FE2 3 > OT1	NGTH PE: 1 GANIS ATURI	: 52' PRT SM: I E:	7 Dicty						nase	with	gate	ekeej	per Cys
< 40	O> SE	QUEN	CE: 4	45										
Met 1	Met Ala Thr Gln													

Ile	Lys	Ala	Arg 20	Lys	Asp	Ile	Gln	Ile 25	Gln	Gln	Ala	Gln	Ser 30	Ala	Ser
Asp	Ile	Leu 35	Gly	Pro	Pro	Glu	Ile 40	Ser	Glu	Thr	Glu	Ile 45	Thr	Thr	Glu
Ser	Ile 50	Leu	Gly	Asp	Gly	Ser 55	Phe	Gly	Thr	Val	Tyr 60	ГÀа	Gly	Arg	Cya
Lys 65	Leu	Lys	Asp	Val	Pro 70	Val	Lys	Val	Met	Leu 75	Lys	Gln	Val	Asp	Gln 80
ГÀз	Thr	Leu	Thr	Asp 85	Phe	Arg	Lys	Glu	Val 90	Ala	Ile	Met	Ser	Lys 95	Ile
Phe	His	Pro	Asn 100	Ile	Val	Leu	Phe	Leu 105	Gly	Ala	Сув	Thr	Ser 110	Thr	Pro
Gly	Lys	Leu 115	Met	Ile	CÀa	Thr	Glu 120	Leu	Met	Lys	Gly	Asn 125	Leu	Glu	Ser
Leu	Leu 130	Leu	Asp	Pro	Met	Val 135	Lys	Leu	Pro	Leu	Ile 140	Thr	Arg	Met	Arg
Met 145	Ala	Lys	Asp	Ala	Ala 150	Leu	Gly	Val	Leu	Trp 155	Leu	His	Ser	Ser	Asn 160
Pro	Val	Phe	Ile	His 165	Arg	Asp	Leu	Lys	Thr 170	Ser	Asn	Leu	Leu	Val 175	Asp
Ala	Asn	Leu	Thr 180	Val	Lys	Val	Cys	Asp 185	Phe	Gly	Leu	Ser	Gln 190	Ile	Lys
Gln	Arg	Gly 195	Glu	Asn	Leu	Lys	Asp 200	Gly	Gln	Asp	Gly	Ala 205	Lys	Gly	Thr
Pro	Leu 210	Trp	Met	Ala	Pro	Glu 215	Val	Leu	Gln	Gly	Arg 220	Leu	Phe	Asn	Glu
Lys 225	Ala	Asp	Val	Tyr	Ser 230	Phe	Gly	Leu	Val	Leu 235	Trp	Gln	Ile	Phe	Thr 240
Arg	Gln	Glu	Leu	Phe 245	Pro	Glu	Phe	Asp	Asn 250	Phe	Phe	ГÀа	Phe	Val 255	Ala
Ala	Ile	Сув	Glu 260	Lys	Gln	Leu	Arg	Pro 265	Ser	Ile	Pro	Asp	Asp 270	Сув	Pro
Lys	Ser	Leu 275	Lys	Glu	Leu	Ile	Gln 280	Lys	Cys	Trp	Asp	Pro 285	Asn	Pro	Glu
Val	Arg 290	Pro	Ser	Phe	Glu	Gly 295	Ile	Val	Ser	Glu	Leu 300	Glu	Glu	Ile	Ile
Ile 305	Asp	СЛа	СЛа		Pro 310		Glu	Tyr	Gly	Ala 315	Ile	Leu	Trp		Asn 320
His	Phe	Lys	His	Glu 325	Asn	Glu	Ala	Asn	Trp 330	Lys	Asp	Phe	Ile	Asn 335	Val
Phe	Ser	Asn	Phe 340	Val	Gly	Leu	Thr	Asn 345	Ala	Asn	Thr	Pro	Ser 350	Met	Ser
Asp	Leu	Leu 355	Gln	Phe	Ser	Pro	Asn 360	Leu	Asn	Gly	Ser	Thr 365	Ile	Glu	Leu
Asn	Phe 370	Lys	Cys	Leu	Lys	Ser 375	Ile	Ile	Val	Ser	Ser 380	Pro	Lys	Gly	Pro
His 385	Glu	Glu	Glu	Val	Val 390	Leu	Met	Glu	Gln	Phe 395	Gly	Lys	Val	Leu	Ala 400
Trp	Phe	Gly	Asn	Leu 405	Lys	Glu	Asp	Gly	Ser 410	Gln	Ile	Leu	Asp	Lys 415	Ile
Arg	Gln	Leu	Met 420	Glu	CÀa	Ala	Trp	Phe 425	His	Gly	Asp	Ile	Ser 430	Thr	Ser
Glu	Ser	Glu	Asn	Arg	Leu	Arg	Gln	Lys	Pro	Glu	Gly	Thr	Phe	Leu	Val

		435					440					445			
Arg	Phe 450	Ser	Thr	Ser	Glu	Tyr 455	Gly	Ala	Tyr	Thr	Ile 460	Ser	Tàa	Val	Ser
Lys 465	Asn	Gly	Gly	Ile	Ser 470	His	Gln	Arg	Ile	His 475	Arg	Pro	Gln	Gly	Lys 480
Phe	Gln	Val	Asn	Asn 485	Ser	Lys	Tyr	Leu	Ser 490	Val	ГÀз	Glu	Leu	Ile 495	Thr
Gly	Glu	Ala	Gln 500	Ala	Leu	Gly	Ile	Asn 505	Thr	Pro	CÀa	Leu	Gly 510	Ser	Arg
Phe	Leu	Phe 515	Leu	Ile	Tyr	Lys	Ala 520	Gln	Leu	Ser	Gly	Tyr 525	Ile	Asn	
<210> SEQ ID NO 46 <211> LENGTH: 523															
<212> TYPE: PRT <213> ORGANISM: Rous sarcoma virus															
<213> ORGANISM: ROUS SATCOMA VITUS <220> FEATURE: <223> OTHER INFORMATION: v-Src															
<400> SEQUENCE: 46															
Met 1	Gly	Ser	Ser	Lys 5	Ser	Lys	Pro	Lys	Asp 10	Pro	Ser	Gln	Arg	Arg 15	Arg
Ser	Leu	Glu	Pro 20	Pro	Asp	Ser	Thr	His 25	His	Gly	Gly	Phe	Pro 30	Ala	Ser
Gln	Thr	Pro 35	Asn	Lys	Thr	Ala	Ala 40	Pro	Asp	Thr	His	Arg 45	Thr	Pro	Ser
Arg	Ser 50	Phe	Gly	Thr	Val	Ala 55	Thr	Glu	Pro	Lys	Leu 60	Phe	Gly	Asp	Phe
Asn 65	Thr	Ser	Asp	Thr	Val 70	Thr	Ser	Pro	Gln	Arg 75	Ala	Gly	Ala	Leu	Ala 80
Gly	Gly	Val	Thr	Thr 85	Phe	Val	Ala	Leu	Tyr 90	Asp	Tyr	Glu	Ser	Trp 95	Ile
Glu	Thr	Asp	Leu 100	Ser	Phe	Lys	Lys	Gly 105	Glu	Arg	Leu	Gln	Ile 110	Val	Asn
Asn	Thr	Glu 115	Gly	Asn	Trp	Trp	Leu 120	Ala	His	Ser	Val	Thr 125	Thr	Gly	Gln
	130	-		Pro		135	-				140	_			
Ala 145	Glu	Glu	Trp	Tyr	Phe 150		Lys	Ile		Arg 155	Arg	Glu	Ser		Arg 160
				Pro 165					170					175	
			180	Lys				185					190		-
Asn	Ala	Lys 195	Gly	Leu	Asn	Val	Lys 200	His	Tyr	ГÀв	Ile	Arg 205	Lys	Leu	Asp
Ser	Gly 210	Gly	Phe	Tyr	Ile	Thr 215	Ser	Arg	Thr	Gln	Phe 220	Ser	Ser	Leu	Gln
Gln 225	Leu	Val	Ala	Tyr	Tyr 230	Ser	Lys	His	Ala	Asp 235	Gly	Leu	Cys	His	Arg 240
Leu	Thr	Asn	Val	Cys 245	Pro	Thr	Ser	Lys	Pro 250	Gln	Thr	Gln	Gly	Leu 255	Ala
rys	Asp	Ala	Trp 260	Glu	Ile	Pro	Arg	Glu 265	Ser	Leu	Arg	Leu	Glu 270	Val	Lys
Leu	Gly	Gln	Gly	CAa	Phe	Gly	Glu	Val	Trp	Met	Gly	Thr	Trp	Asn	Gly

		275					280					285			
Thr	Thr 290	Arg	Val	Ala	Ile	Lys 295	Thr	Leu	Lys	Pro	Gly 300	Thr	Met	Ser	Pro
Glu 305	Ala	Phe	Leu	Gln	Glu 310	Ala	Gln	Val	Met	Lys 315	Lys	Leu	Arg	His	Glu 320
Lys	Leu	Val	Gln	Leu 325	Tyr	Ala	Val	Val	Ser 330	Glu	Glu	Pro	Ile	Tyr 335	Ile
Val	Ile	Glu	Tyr 340	Met	Ser	Lys	Gly	Ser 345	Leu	Leu	Asp	Phe	Leu 350	Lys	Gly
ГÀа	Tyr	Leu 355	Arg	Leu	Pro	Gln	Leu 360	Val	Asp	Met	Ala	Ala 365	Gln	Ile	Ala
Ser	Gly 370	Met	Ala	Tyr	Val	Glu 375	Arg	Met	Asn	Tyr	Val 380	His	Arg	Asp	Leu
Arg 385	Ala	Ala	Asn	Ile	Leu 390	Val	Gly	Glu	Asn	Leu 395	Val	Cys	Lys	Val	Ala 400
Asp	Phe	Gly	Leu	Ala 405	Arg	Leu	Ile	Glu	Asp 410	Asn	Glu	Tyr	Thr	Ala 415	Arg
Gln	Gly	Ala	Lys 420	Phe	Pro	Ile	Lys	Trp 425	Thr	Ala	Pro	Glu	Ala 430	Ala	Leu
Tyr	Gly	Arg 435	Phe	Thr	Ile	ГÀв	Ser 440	Asp	Val	Trp	Ser	Phe 445	Gly	Ile	Leu
Leu	Thr 450	Glu	Leu	Thr	Thr	Lys 455	Gly	Arg	Met	Pro	Tyr 460	Pro	Gly	Met	Gly
Asn 465	Gly	Glu	Val	Leu	Asp 470	Arg	Val	Glu	Arg	Gly 475	Tyr	Arg	Met	Pro	Cys 480
Pro	Pro	Glu	Cys	Pro 485	Glu	Ser	Leu	His	Asp 490	Leu	Met	CAa	Gln	Cys 495	Trp
Arg	Arg	Asp	Pro 500	Glu	Glu	Arg	Pro	Thr 505	Phe	Glu	Tyr	Leu	Gln 510	Ala	Gln
Leu	Leu	Pro 515	Ala	CAa	Val	Leu	Glu 520	Val	Ala	Glu					
<211 <212 <213 <220 <223 <220 <223	<210> SEQ ID NO 47 <211> LENGTH: 523 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <2223> OTHER INFORMATION: synthetic [I338X]v-Src <220> FEATURE: <221> NAME/KEY: VARIANT <222> LOCATION: (338)(338)														
<400)> SI	EQUEI	NCE :	47											
Met 1	Gly	Ser	Ser	2 PÀa	Ser	ГÀа	Pro	ГÀа	Asp 10	Pro	Ser	Gln	Arg	Arg 15	Arg
Ser	Leu	Glu	Pro 20	Pro	Asp	Ser	Thr	His 25	His	Gly	Gly	Phe	Pro 30	Ala	Ser
Gln	Thr	Pro 35	Asn	ГÀа	Thr	Ala	Ala 40	Pro	Asp	Thr	His	Arg 45	Thr	Pro	Ser
Arg	Ser 50	Phe	Gly	Thr	Val	Ala 55	Thr	Glu	Pro	Lys	Leu 60	Phe	Gly	Asp	Phe
Asn 65	Thr	Ser	Asp	Thr	Val 70	Thr	Ser	Pro	Gln	Arg 75	Ala	Gly	Ala	Leu	Ala 80
Gly	Gly	Val	Thr	Thr 85	Phe	Val	Ala	Leu	Tyr 90	Asp	Tyr	Glu	Ser	Trp 95	Ile

Glu	Thr	Asp	Leu 100	Ser	Phe	ràa	Lys	Gly 105	Glu	Arg	Leu	Gln	Ile 110	Val	Asn
Asn	Thr	Glu 115	Gly	Asn	Trp	Trp	Leu 120	Ala	His	Ser	Val	Thr 125	Thr	Gly	Gln
Thr	Gly 130	Tyr	Ile	Pro	Ser	Asn 135	Tyr	Val	Ala	Pro	Ser 140	Asp	Ser	Ile	Gln
Ala 145	Glu	Glu	Trp	Tyr	Phe 150	Gly	Lys	Ile	Thr	Arg 155	Arg	Glu	Ser	Glu	Arg 160
Leu	Leu	Leu	Asn	Pro 165	Glu	Asn	Pro	Arg	Gly 170	Thr	Phe	Leu	Val	Arg 175	Glu
Ser	Glu	Thr	Thr 180	Lys	Gly	Ala	Tyr	Сув 185	Leu	Ser	Val	Ser	Asp 190	Phe	Asp
Asn	Ala	Lys 195	Gly	Leu	Asn	Val	Lys 200	His	Tyr	Lys	Ile	Arg 205	ГЛа	Leu	Asp
Ser	Gly 210	Gly	Phe	Tyr	Ile	Thr 215	Ser	Arg	Thr	Gln	Phe 220	Ser	Ser	Leu	Gln
Gln 225	Leu	Val	Ala	Tyr	Tyr 230	Ser	Lys	His	Ala	Asp 235	Gly	Leu	Cys	His	Arg 240
Leu	Thr	Asn	Val	Cys 245	Pro	Thr	Ser	Lys	Pro 250	Gln	Thr	Gln	Gly	Leu 255	Ala
ГÀа	Asp	Ala	Trp 260	Glu	Ile	Pro	Arg	Glu 265	Ser	Leu	Arg	Leu	Glu 270	Val	Lys
Leu	Gly	Gln 275	Gly	Cya	Phe	Gly	Glu 280	Val	Trp	Met	Gly	Thr 285	Trp	Asn	Gly
Thr	Thr 290	Arg	Val	Ala	Ile	Lys 295	Thr	Leu	Lys	Pro	Gly 300	Thr	Met	Ser	Pro
Glu 305	Ala	Phe	Leu	Gln	Glu 310	Ala	Gln	Val	Met	Lys 315	Lys	Leu	Arg	His	Glu 320
Lys	Leu	Val	Gln	Leu 325	Tyr	Ala	Val	Val	Ser 330	Glu	Glu	Pro	Ile	Tyr 335	Ile
Val	Xaa	Glu	Tyr 340	Met	Ser	Lys	Gly	Ser 345	Leu	Leu	Asp	Phe	Leu 350	Lys	Gly
Lys	Tyr	Leu 355	Arg	Leu	Pro	Gln	Leu 360	Val	Asp	Met	Ala	Ala 365	Gln	Ile	Ala
Ser	Gly 370	Met	Ala	Tyr	Val	Glu 375	Arg	Met	Asn	Tyr	Val 380	His	Arg	Asp	Leu
Arg 385	Ala	Ala	Asn	Ile	Leu 390	Val	Gly	Glu	Asn	Leu 395	Val	CAa	Lys	Val	Ala 400
Asp	Phe	Gly	Leu	Ala 405	Arg	Leu	Ile	Glu	Asp 410	Asn	Glu	Tyr	Thr	Ala 415	Arg
Gln	Gly	Ala	Lys 420	Phe	Pro	Ile	Lys	Trp 425	Thr	Ala	Pro	Glu	Ala 430	Ala	Leu
Tyr	Gly	Arg 435	Phe	Thr	Ile	Lys	Ser 440	Asp	Val	Trp	Ser	Phe 445	Gly	Ile	Leu
Leu	Thr 450	Glu	Leu	Thr	Thr	Lys 455	Gly	Arg	Met	Pro	Tyr 460	Pro	Gly	Met	Gly
Asn 465	Gly	Glu	Val	Leu	Asp 470	Arg	Val	Glu	Arg	Gly 475	Tyr	Arg	Met	Pro	Cys 480
Pro	Pro	Glu	СЛв	Pro 485	Glu	Ser	Leu	His	Asp 490	Leu	Met	СЛв	Gln	Сув 495	Trp
Arg	Arg	Asp	Pro 500	Glu	Glu	Arg	Pro	Thr 505	Phe	Glu	Tyr	Leu	Gln 510	Ala	Gln
Leu	Leu	Pro	Ala	Cys	Val	Leu	Glu	Val	Ala	Glu					

-continued

520

515

		212					520								
<211 <212 <213 <220	L> LI 2> T: 3> OI 0> FI	ENGTI YPE : RGAN EATUI	ISM: RE:	23 Art:			seque nthet		1338	C]v-:	Src				
< 400)> SI	EQUEI	ICE :	48											
Met 1	Gly	Ser	Ser	Lys 5	Ser	Lys	Pro	Lys	Asp 10	Pro	Ser	Gln	Arg	Arg 15	Arg
Ser	Leu	Glu	Pro 20	Pro	Asp	Ser	Thr	His 25	His	Gly	Gly	Phe	Pro 30	Ala	Ser
Gln	Thr	Pro 35	Asn	ГÀа	Thr	Ala	Ala 40	Pro	Asp	Thr	His	Arg 45	Thr	Pro	Ser
Arg	Ser 50	Phe	Gly	Thr	Val	Ala 55	Thr	Glu	Pro	Lys	Leu 60	Phe	Gly	Asp	Phe
Asn 65	Thr	Ser	Asp	Thr	Val 70	Thr	Ser	Pro	Gln	Arg 75	Ala	Gly	Ala	Leu	Ala 80
Gly	Gly	Val	Thr	Thr 85	Phe	Val	Ala	Leu	Tyr 90	Asp	Tyr	Glu	Ser	Trp 95	Ile
Glu	Thr	Asp	Leu 100	Ser	Phe	Lys	Lys	Gly 105	Glu	Arg	Leu	Gln	Ile 110	Val	Asn
Asn	Thr	Glu 115	Gly	Asn	Trp	Trp	Leu 120	Ala	His	Ser	Val	Thr 125	Thr	Gly	Gln
Thr	Gly 130	Tyr	Ile	Pro	Ser	Asn 135	Tyr	Val	Ala	Pro	Ser 140	Asp	Ser	Ile	Gln
Ala 145	Glu	Glu	Trp	Tyr	Phe 150	Gly	Lys	Ile	Thr	Arg 155	Arg	Glu	Ser	Glu	Arg 160
Leu	Leu	Leu	Asn	Pro 165	Glu	Asn	Pro	Arg	Gly 170	Thr	Phe	Leu	Val	Arg 175	Glu
Ser	Glu	Thr	Thr 180	Lys	Gly	Ala	Tyr	Сув 185	Leu	Ser	Val	Ser	Asp 190	Phe	Asp
Asn	Ala	Lys 195	Gly	Leu	Asn	Val	Lys 200	His	Tyr	Lys	Ile	Arg 205	Lys	Leu	Asp
Ser	Gly 210	Gly	Phe	Tyr	Ile	Thr 215	Ser	Arg	Thr	Gln	Phe 220	Ser	Ser	Leu	Gln
Gln 225	Leu	Val	Ala	Tyr	Tyr 230	Ser	Lys	His	Ala	Asp 235	Gly	Leu	Cys	His	Arg 240
Leu	Thr	Asn	Val	Сув 245	Pro	Thr	Ser	Lys	Pro 250	Gln	Thr	Gln	Gly	Leu 255	Ala
ГÀв	Asp	Ala	Trp 260	Glu	Ile	Pro	Arg	Glu 265	Ser	Leu	Arg	Leu	Glu 270	Val	Lys
Leu	Gly	Gln 275	Gly	CÀa	Phe	Gly	Glu 280	Val	Trp	Met	Gly	Thr 285	Trp	Asn	Gly
Thr	Thr 290	Arg	Val	Ala	Ile	Lys 295	Thr	Leu	Lys	Pro	Gly 300	Thr	Met	Ser	Pro
Glu 305	Ala	Phe	Leu	Gln	Glu 310	Ala	Gln	Val	Met	Lys 315	Lys	Leu	Arg	His	Glu 320
Lys	Leu	Val	Gln	Leu 325	Tyr	Ala	Val	Val	Ser 330	Glu	Glu	Pro	Ile	Tyr 335	Ile
Val	Сув	Glu	Tyr 340	Met	Ser	Lys	Gly	Ser 345	Leu	Leu	Asp	Phe	Leu 350	Lys	Gly
Lys	Tyr	Leu	Arg	Leu	Pro	Gln	Leu	Val	Asp	Met	Ala	Ala	Gln	Ile	Ala

-continued

Ser	Gly 370	Met	Ala	Tyr	Val	Glu 375	Arg	Met	Asn	Tyr	Val 380	His	Arg	Asp	Leu
Arg 385	Ala	Ala	Asn	Ile	Leu 390	Val	Gly	Glu	Asn	Leu 395	Val	Cys	Lys	Val	Ala 400
Asp	Phe	Gly	Leu	Ala 405	Arg	Leu	Ile	Glu	Asp 410	Asn	Glu	Tyr	Thr	Ala 415	Arg
Gln	Gly	Ala	Lys 420	Phe	Pro	Ile	Lys	Trp 425	Thr	Ala	Pro	Glu	Ala 430	Ala	Leu
Tyr	Gly	Arg 435	Phe	Thr	Ile	Lys	Ser 440	Asp	Val	Trp	Ser	Phe 445	Gly	Ile	Leu
Leu	Thr 450	Glu	Leu	Thr	Thr	Lys 455	Gly	Arg	Met	Pro	Tyr 460	Pro	Gly	Met	Gly
Asn 465	Gly	Glu	Val	Leu	Asp 470	Arg	Val	Glu	Arg	Gly 475	Tyr	Arg	Met	Pro	Cys 480
Pro	Pro	Glu	Càa	Pro 485	Glu	Ser	Leu	His	Asp 490	Leu	Met	CÀa	Gln	Сув 495	Trp
Arg	Arg	Asp	Pro 500	Glu	Glu	Arg	Pro	Thr 505	Phe	Glu	Tyr	Leu	Gln 510	Ala	Gln
Leu	Leu	Pro 515	Ala	Cys	Val	Leu	Glu 520	Val	Ala	Glu					
<211 <212 <213 <220	<pre><210> SEQ ID NO 49 <211> LENGTH: 523 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic [I338T]v-Src</pre>														
<400> SEQUENCE: 49															
Met 1	Gly	Ser	Ser	Lys 5	Ser	Lys	Pro	Lys	Asp 10	Pro	Ser	Gln	Arg	Arg 15	Arg
1				5					10						
1 Ser	Leu	Glu	Pro 20	5 Pro	Asp	Ser	Thr	His 25	10 His	Gly	Gly	Phe	Pro 30	15	Ser
1 Ser Gln	Leu Thr	Glu Pro 35	Pro 20 Asn	5 Pro Lys	Asp Thr	Ser Ala	Thr Ala 40	His 25 Pro	10 His Asp	Gly Thr	Gly His	Phe Arg 45	Pro 30 Thr	15 Ala	Ser Ser
1 Ser Gln Arg	Leu Thr Ser 50	Glu Pro 35 Phe	Pro 20 Asn Gly	5 Pro Lys Thr	Asp Thr Val	Ser Ala Ala 55	Thr Ala 40 Thr	His 25 Pro Glu	10 His Asp Pro	Gly Thr Lys	Gly His Leu 60	Phe Arg 45 Phe	Pro 30 Thr	15 Ala Pro	Ser Ser Phe
Ser Gln Arg Asn 65	Leu Thr Ser 50 Thr	Glu Pro 35 Phe Ser	Pro 20 Asn Gly Asp	5 Pro Lys Thr	Asp Thr Val Val 70	Ser Ala Ala 55 Thr	Thr Ala 40 Thr	His 25 Pro Glu Pro	10 His Asp Pro Gln	Gly Thr Lys Arg 75	Gly His Leu 60 Ala	Phe Arg 45 Phe Gly	Pro 30 Thr Gly	15 Ala Pro Asp	Ser Ser Phe Ala
Ser Gln Arg Asn 65	Leu Thr Ser 50 Thr	Glu Pro 35 Phe Ser	Pro 20 Asn Gly Asp	5 Pro Lys Thr Thr	Asp Thr Val Val 70	Ser Ala Ala 55 Thr	Thr Ala 40 Thr Ser	His 25 Pro Glu Pro Leu	10 His Asp Pro Gln Tyr 90	Gly Thr Lys Arg 75 Asp	Gly His Leu 60 Ala	Phe Arg 45 Phe Gly	Pro 30 Thr Gly Ala Ser	15 Ala Pro Asp Leu Trp	Ser Ser Phe Ala 80 Ile
Ser Gln Arg Asn 65 Gly	Leu Thr Ser 50 Thr Gly	Glu Pro 35 Phe Ser Val	Pro 20 Asn Gly Asp Thr	5 Pro Lys Thr Thr S5 Ser	Asp Thr Val 70 Phe	Ser Ala Ala 55 Thr Val	Thr Ala 40 Thr Ser Ala	His 25 Pro Glu Pro Leu Gly 105	10 His Asp Pro Gln Tyr 90 Glu	Gly Thr Lys Arg 75 Asp	Gly His Leu 60 Ala Tyr Leu	Phe Arg 45 Phe Gly Glu Gln	Pro 30 Thr Gly Ala Ser Ile 110	Ala Pro Asp Leu Trp 95	Ser Ser Phe Ala 80 Ile Asn
Ser Gln Arg Asn 65 Gly Glu Asn	Leu Thr Ser 50 Thr Gly Thr	Glu Pro 35 Phe Ser Val Asp Glu 115	Pro 20 Asn Gly Asp Thr Leu 100	Pro Lys Thr Thr Ser Asn	Asp Thr Val Val Phe Trp	Ser Ala Ala 55 Thr Val Lys	Thr Ala 40 Thr Ser Ala Lys Leu 120	His 25 Pro Glu Pro Leu Gly 105 Ala	10 His Asp Pro Gln Tyr 90 Glu His	Gly Thr Lys Arg 75 Asp Arg	Gly His Leu 60 Ala Tyr Leu Val	Phe Arg 45 Phe Gly Glu Gln Thr 125	Pro 30 Thr Gly Ala Ser Ile 110 Thr	15 Ala Pro Asp Leu Trp 95 Val	Ser Ser Phe Ala 80 Ile Asn Gln
Ser Gln Arg Asn 65 Gly Glu Asn Thr	Leu Thr Ser 50 Thr Gly Thr Thr	Glu Pro 35 Phe Ser Val Asp Glu 115 Tyr	Pro 20 Asn Gly Asp Thr Leu 100 Gly	5 Pro Lys Thr Thr Ser Asn	Asp Thr Val 70 Phe Trp Ser	Ser Ala Ala 55 Thr Val Lys Trp Asn 135	Thr Ala 40 Thr Ser Ala Lys Leu 120 Tyr	His 25 Pro Glu Pro Leu Gly 105 Ala	10 His Asp Pro Gln Tyr 90 Glu His	Gly Thr Lys Arg 75 Asp Arg Pro	Gly His Leu 60 Ala Tyr Leu Val Ser 140	Phe Arg 45 Phe Gly Glu Gln Thr 125 Asp	Pro 30 Thr Gly Ala Ser Ile 110 Thr	15 Ala Pro Asp Leu Trp 95 Val	Ser Ser Phe Ala 80 Ile Asn Gln
Ser Gln Arg Asn 65 Gly Glu Asn Thr	Leu Thr Ser 50 Thr Gly Thr Gly 30 Glu	Glu Pro 35 Phe Ser Val Asp Glu 115 Tyr	Pro 20 Asn Gly Asp Thr Leu 100 Gly Ile	5 Pro Lys Thr Thr S5 Ser Asn Pro	Asp Thr Val 70 Phe Trp Ser Phe 150	Ser Ala Ala 55 Thr Val Lys Trp Asn 135 Gly	Thr Ala 40 Thr Ser Ala Lys Leu 120 Tyr	His 25 Pro Glu Pro Leu Gly 105 Ala Val	10 His Asp Pro Gln Tyr 90 Glu His Ala	Gly Thr Lys Arg 75 Asp Arg Fro	Gly His Leu 60 Ala Tyr Leu Val Ser 140 Arg	Phe Arg 45 Phe Gly Glu Gln Thr 125 Asp	Pro 30 Thr Gly Ala Ser Ile 110 Thr Ser	15 Ala Pro Asp Leu Trp 95 Val Gly Ile	Ser Ser Phe Ala 80 Ile Asn Gln Gln Arg 160
Ser Gln Arg Asn 65 Gly Glu Asn Thr Ala 145 Leu	Leu Thr Ser 50 Thr Gly Thr Gly 130 Glu Leu	Glu Pro 35 Phe Ser Val Asp Glu 115 Tyr Glu Leu	Pro 20 Asn Gly Asp Thr Leu 100 Gly Ile Trp Asn	5 Pro Lys Thr Thr 85 Ser Asn Pro Tyr	Asp Thr Val 70 Phe Trp Ser Phe 150 Glu	Ser Ala Ala 55 Thr Val Lys Trp Asn 135 Gly Asn	Thr Ala 40 Thr Ser Ala Lys Leu 120 Tyr Lys	His 25 Pro Glu Pro Leu Gly 105 Ala Val Ile	His Asp Pro Gln Tyr 90 Glu His Ala Thr	Gly Thr Lys Arg 75 Asp Arg Fro Arg 155	Gly His Leu 60 Ala Tyr Leu Val Ser 140 Arg	Phe Arg 45 Phe Gly Glu Gln Thr 125 Asp Glu Leu	Pro 30 Thr Gly Ala Ser Ile 110 Thr Ser Val	15 Ala Pro Asp Leu Trp 95 Val Gly Ile Glu Arg	Ser Ser Phe Ala 80 Ile Asn Gln Gln Arg 160 Glu

-continued												
195			200					205				
Ser Gly Gly 210	Phe Tyr	Ile Thr		Arg	Thr	Gln	Phe 220	Ser	Ser	Leu	Gln	
Gln Leu Val 225	Ala Tyr	Tyr Ser 230	Lys:	His	Ala	Asp 235	Gly	Leu	Сув	His	Arg 240	
Leu Thr Asn	Val Cys 245		Ser	Lys	Pro 250	Gln	Thr	Gln	Gly	Leu 255	Ala	
Lys Asp Ala	Trp Glu 260	Ile Pro	Arg	Glu 265	Ser	Leu	Arg	Leu	Glu 270	Val	Lys	
Leu Gly Gln 275		Phe Gly	Glu 280	Val	Trp	Met	Gly	Thr 285	Trp	Asn	Gly	
Thr Thr Arg 290	Val Ala	Ile Lys 295		Leu	Lys	Pro	Gly 300	Thr	Met	Ser	Pro	
Glu Ala Phe 305	Leu Gln	Glu Ala 310	Gln	Val	Met	Lys 315	Lys	Leu	Arg	His	Glu 320	
Lys Leu Val	Gln Leu 325		. Val	Val	Ser 330	Glu	Glu	Pro	Ile	Tyr 335	Ile	
Val Thr Glu	Tyr Met 340	Ser Lys	Gly	Ser 345	Leu	Leu	Asp	Phe	Leu 350	Lys	Gly	
Lys Tyr Leu 355	-	Pro Glr	1 Leu 360	Val	Asp	Met	Ala	Ala 365	Gln	Ile	Ala	
Ser Gly Met 370	Ala Tyr	Val Glu 375	_	Met	Asn	Tyr	Val 380	His	Arg	Asp	Leu	
Arg Ala Ala 385	Asn Ile	Leu Val 390	. Gly	Glu	Asn	Leu 395	Val	CAa	Lys	Val	Ala 400	
Asp Phe Gly	Leu Ala 405		ı Ile	Glu	Asp 410	Asn	Glu	Tyr	Thr	Ala 415	Arg	
Gln Gly Ala	Lys Phe 420	Pro Ile	. Lys	Trp 425	Thr	Ala	Pro	Glu	Ala 430	Ala	Leu	
Tyr Gly Arg 435	Phe Thr	Ile Lys	Ser 440	Asp	Val	Trp	Ser	Phe 445	Gly	Ile	Leu	
Leu Thr Glu 450	Leu Thr	Thr Lys	_	Arg	Met	Pro	Tyr 460	Pro	Gly	Met	Gly	
Asn Gly Glu 465	Val Leu	Asp Arg	y Val	Glu	Arg	Gly 475	Tyr	Arg	Met	Pro	Cys 480	
Pro Pro Glu	Cys Pro 485				Asp 490			Сув		Суs 495		
Arg Arg Asp	Pro Glu 500	Glu Arg	Pro	Thr 505	Phe	Glu	Tyr	Leu	Gln 510	Ala	Gln	
Leu Leu Pro 515	Ala Cys	Val Leu	520	Val	Ala	Glu						
<210> SEQ I <211> LENGT <212> TYPE: <213> ORGAN <220> FEATU	H: 523 PRT ISM: Art RE:		_			. ~1	-					
<223> OTHER		110N: a	nunet	TC	1338	v-≀	51.C					
<400> SEQUE		Ser Lys	Pro	Lys	Asp	Pro	Ser	Gln	Arg	Arg	Arg	
1 Ser Leu Glu	5				10					15		
	20			25			1		30			

Gln Thr Pro Asn Lys Thr Ala Ala Pro Asp Thr His Arg Thr Pro Ser

		35					40					45			
Arg	Ser 50	Phe	Gly	Thr	Val	Ala 55	Thr	Glu	Pro	Lys	Leu 60	Phe	Gly	Asp	Phe
Asn 65	Thr	Ser	Asp	Thr	Val 70	Thr	Ser	Pro	Gln	Arg 75	Ala	Gly	Ala	Leu	Ala 80
Gly	Gly	Val	Thr	Thr 85	Phe	Val	Ala	Leu	Tyr 90	Asp	Tyr	Glu	Ser	Trp 95	Ile
Glu	Thr	Asp	Leu 100	Ser	Phe	Lys	Lys	Gly 105	Glu	Arg	Leu	Gln	Ile 110	Val	Asn
Asn	Thr	Glu 115	Gly	Asn	Trp	Trp	Leu 120	Ala	His	Ser	Val	Thr 125	Thr	Gly	Gln
Thr	Gly 130	Tyr	Ile	Pro	Ser	Asn 135	Tyr	Val	Ala	Pro	Ser 140	Asp	Ser	Ile	Gln
Ala 145	Glu	Glu	Trp	Tyr	Phe 150	Gly	Lys	Ile	Thr	Arg 155	Arg	Glu	Ser	Glu	Arg 160
Leu	Leu	Leu	Asn	Pro 165	Glu	Asn	Pro	Arg	Gly 170	Thr	Phe	Leu	Val	Arg 175	Glu
Ser	Glu	Thr	Thr 180	Lys	Gly	Ala	Tyr	Cys 185	Leu	Ser	Val	Ser	Asp 190	Phe	Asp
Asn	Ala	Lys 195	Gly	Leu	Asn	Val	Lys 200	His	Tyr	Lys	Ile	Arg 205	Lys	Leu	Asp
Ser	Gly 210	Gly	Phe	Tyr	Ile	Thr 215	Ser	Arg	Thr	Gln	Phe 220	Ser	Ser	Leu	Gln
Gln 225	Leu	Val	Ala	Tyr	Tyr 230	Ser	Lys	His	Ala	Asp 235	Gly	Leu	Cys	His	Arg 240
Leu	Thr	Asn	Val	Сув 245	Pro	Thr	Ser	Lys	Pro 250	Gln	Thr	Gln	Gly	Leu 255	Ala
Lys	Asp	Ala	Trp 260	Glu	Ile	Pro	Arg	Glu 265	Ser	Leu	Arg	Leu	Glu 270	Val	Lys
Leu	Gly	Gln 275	Gly	CAa	Phe	Gly	Glu 280	Val	Trp	Met	Gly	Thr 285	Trp	Asn	Gly
Thr	Thr 290	Arg	Val	Ala	Ile	Lys 295	Thr	Leu	Lys	Pro	Gly 300	Thr	Met	Ser	Pro
Glu 305	Ala	Phe	Leu	Gln	Glu 310	Ala	Gln	Val	Met	Lys 315	Lys	Leu	Arg	His	Glu 320
Lys	Leu	Val	Gln	Leu 325	Tyr	Ala	Val	Val	Ser 330	Glu	Glu	Pro	Ile	Tyr 335	Ile
Val	Gly	Glu	Tyr 340	Met	Ser	ГЛа	Gly	Ser 345	Leu	Leu	Asp	Phe	Leu 350	ГЛа	Gly
Lys	Tyr	Leu 355	Arg	Leu	Pro	Gln	Leu 360	Val	Asp	Met	Ala	Ala 365	Gln	Ile	Ala
Ser	Gly 370	Met	Ala	Tyr	Val	Glu 375	Arg	Met	Asn	Tyr	Val 380	His	Arg	Asp	Leu
Arg 385	Ala	Ala	Asn	Ile	Leu 390	Val	Gly	Glu	Asn	Leu 395	Val	CÀa	ГЛа	Val	Ala 400
Asp	Phe	Gly	Leu	Ala 405	Arg	Leu	Ile	Glu	Asp 410	Asn	Glu	Tyr	Thr	Ala 415	Arg
Gln	Gly	Ala	Lys 420	Phe	Pro	Ile	Lys	Trp 425	Thr	Ala	Pro	Glu	Ala 430	Ala	Leu
Tyr	Gly	Arg 435	Phe	Thr	Ile	Lys	Ser 440	Asp	Val	Trp	Ser	Phe 445	Gly	Ile	Leu
Leu	Thr 450	Glu	Leu	Thr	Thr	Lys 455	Gly	Arg	Met	Pro	Tyr 460	Pro	Gly	Met	Gly

```
Asn Gly Glu Val Leu Asp Arg Val Glu Arg Gly Tyr Arg Met Pro Cys
Pro Pro Glu Cys Pro Glu Ser Leu His Asp Leu Met Cys Gln Cys Trp
Arg Arg Asp Pro Glu Glu Arg Pro Thr Phe Glu Tyr Leu Gln Ala Gln
Leu Leu Pro Ala Cys Val Leu Glu Val Ala Glu
<210> SEQ ID NO 51
<211> LENGTH: 8
<212> TYPE: PRT
<213 > ORGANISM: Artificial sequence
<223> OTHER INFORMATION: synthetic kinase peptide substrate
<400> SEQUENCE: 51
Ile Tyr Gly Glu Phe Lys Lys Lys
<210> SEQ ID NO 52
<211> LENGTH: 38
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthetic ATP binding site region of src kinase
     domain
<400> SEQUENCE: 52
Pro Glu Ala Phe Leu Gln Glu Ala Gln Val Met Lys Lys Leu Arg His
                                   10
Glu Lys Leu Val Gln Leu Tyr Ala Val Val Ser Glu Glu Pro Ile Tyr
Ile Val Thr Glu Tyr Met
       35
<210> SEQ ID NO 53
<211> LENGTH: 40
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthetic ATP binding site region of rsk2
     kinase domain
<400> SEQUENCE: 53
Lys Arg Asp Pro Thr Glu Glu Ile Glu Ile Leu Leu Arg Tyr Gly Gln
His Pro Asn Ile Ile Thr Leu Lys Asp Val Tyr Asp Asp Gly Lys Tyr
Val Tyr Val Val Thr Glu Leu Met
<210> SEQ ID NO 54
<211> LENGTH: 44
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthetic ATP binding site region of nek2
     kinase domain
<400> SEQUENCE: 54
Glu Val Glu Lys Gln Met Leu Val Ser Glu Val Asn Leu Leu Arg Glu
1 5
                         10
```

```
Leu Lys His Pro Asn Ile Val Arg Tyr Tyr Asp Arg Ile Ile Asp Arg
Thr Asn Thr Thr Leu Tyr Ile Val Met Glu Tyr Cys
       35
<210> SEQ ID NO 55
<211> LENGTH: 43
<212> TYPE: PRT
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthetic ATP binding site region of mekk1
     kinase domain
<400> SEQUENCE: 55
Gln Glu Glu Val Val Glu Ala Leu Arg Glu Glu Ile Arg Met Met Ser
His Leu Asn His Pro Asn Ile Ile Arg Met Leu Gly Ala Thr Cys Glu
Lys Ser Asn Tyr Asn Leu Phe Ile Glu Trp Met
<210> SEQ ID NO 56
<211> LENGTH: 41
<212> TYPE: PRT
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthetic ATP binding site region of msk1
     kinase domain
<400> SEQUENCE: 56
Met Glu Ala Asn Thr Gln Lys Glu Ile Thr Ala Leu Lys Leu Cys Glu
Gly His Pro Asn Ile Val Lys Leu His Glu Val Phe His Asp Gln Leu
           20
                              25
His Thr Phe Leu Val Met Glu Leu Leu
     35
<210> SEQ ID NO 57
<211> LENGTH: 42
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthetic ATP binding site region of plk1
     kinase domain
<400> SEQUENCE: 57
Pro His Gln Arg Glu Lys Met Ser Met Glu Ile Ser Ile His Arg Ser
Leu Ala His Gln His Val Val Gly Phe His Gly Phe Phe Glu Asp Asn
Asp Phe Val Phe Val Val Leu Glu Leu Cys
     35
<210> SEQ ID NO 58
<211> LENGTH: 40
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthetic region of v-Src kinase domain
<400> SEQUENCE: 58
Arg His Glu Lys Leu Val Gln Leu Tyr Ala Met Val Ser Glu Glu Pro
                         10
```

```
Ile Tyr Ile Val Ile Glu Tyr Met Ser Lys Gly Ser Leu Leu Asp Phe
Leu Lys Gly Glu Met Gly Lys Tyr
       35
<210> SEQ ID NO 59
<211> LENGTH: 40
<212> TYPE: PRT
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthetic region of c-Src kinase domain
<400> SEQUENCE: 59
Arg His Glu Lys Leu Val Gln Leu Tyr Ala Val Val Ser Glu Glu Pro
Ile Tyr Ile Val Thr Glu Tyr Met Ser Lys Gly Ser Leu Leu Asp Phe
Leu Lys Gly Glu Thr Gly Lys Tyr
       35
<210> SEQ ID NO 60
<211> LENGTH: 40
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthetic region of Lck kinase domain
<400> SEQUENCE: 60
Gln His Gln Arg Leu Val Arg Leu Tyr Ala Val Val Thr Gln Glu Pro
                                   10
Ile Tyr Ile Ile Thr Glu Tyr Met Glu Asn Gly Ser Leu Val Asp Phe
           20
                               25
Leu Lys Thr Pro Ser Gly Ile Lys
     35
<210> SEQ ID NO 61
<211> LENGTH: 40
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthetic region of Fyn kinase domain
<400> SEQUENCE: 61
Lys His Asp Lys Leu Val Gln Leu Tyr Ala Val Val Ser Glu Glu Pro
Ile Tyr Ile Val Thr Glu Tyr Met Asn Lys Gly Ser Leu Leu Asp Phe
Leu Lys Asp Gly Glu Gly Arg Ala
<210> SEQ ID NO 62
<211> LENGTH: 40
<212> TYPE: PRT
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthetic region of c-Yes kinase domain
<400> SEQUENCE: 62
Arg His Asp Lys Leu Val Pro Leu Tyr Ala Val Val Ser Glu Glu Pro
                                   10
Ile Tyr Ile Val Thr Glu Phe Met Ser Lys Gly Ser Leu Leu Asp Phe
         20
```

```
Leu Lys Glu Gly Asp Gly Lys Tyr
       35
<210> SEQ ID NO 63
<211> LENGTH: 40
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthetic region of Yrk kinase domain
<400> SEQUENCE: 63
Arg His Asp Lys Leu Val Gln Leu Tyr Ala Val Val Ser Glu Glu Pro
Ile Tyr Ile Val Thr Glu Phe Met Ser Gln Gly Ser Leu Leu Asp Phe
Leu Lys Asp Gly Asp Gly Arg Tyr
<210> SEQ ID NO 64
<211> LENGTH: 40
<212> TYPE: PRT
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthetic region of c-Fgr kinase domain
<400> SEOUENCE: 64
Arg His Asp Lys Leu Val Gln Leu Tyr Ala Val Val Ser Glu Glu Pro
                                   10
Ile Tyr Ile Val Thr Glu Phe Met Cys His Gly Ser Leu Leu Asp Phe
Leu Lys Asn Pro Glu Gly Gln Asp
       35
<210> SEQ ID NO 65
<211> LENGTH: 41
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
\ensuremath{^{<223>}} OTHER INFORMATION: synthetic region of Lyn kinase domain
<400> SEQUENCE: 65
Gln His Asp Lys Leu Val Arg Leu Tyr Ala Val Val Thr Arg Glu Glu
Pro Ile Tyr Ile Ile Thr Glu Tyr Met Ala Lys Gly Ser Leu Leu Asp
Phe Leu Lys Ser Asp Glu Gly Gly Lys
<210> SEQ ID NO 66
<211> LENGTH: 40
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthetic region of Hck kinase domain
<400> SEQUENCE: 66
Gln His Asp Lys Leu Val Lys Leu His Ala Val Val Thr Lys Glu Pro
Ile Tyr Ile Ile Thr Glu Phe Met Ala Lys Gly Ser Leu Leu Asp Phe
           20
                                25
Leu Lys Ser Asp Glu Gly Ser Lys
```

```
<210> SEQ ID NO 67
<211> LENGTH: 40
<212> TYPE: PRT
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthetic region of Blk kinase domain
<400> SEQUENCE: 67
Gln His Glu Arg Leu Val Arg Leu Tyr Ala Val Val Thr Arg Glu Pro
Ile Tyr Ile Val Thr Glu Tyr Met Ala Arg Gly Cys Leu Leu Asp Phe
Leu Lys Thr Asp Glu Gly Ser Arg
<210> SEQ ID NO 68
<211> LENGTH: 41
<212> TYPE: PRT
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthetic region of Abl kinase domain
<400> SEQUENCE: 68
Lys His Pro Asn Leu Val Gln Leu Leu Gly Val Cys Thr Arg Glu Pro
                                   10
Pro Phe Tyr Ile Ile Thr Glu Phe Met Thr Tyr Gly Asn Leu Leu Asp
                              25
          2.0
Tyr Leu Arg Glu Cys Asn Arg Gln Glu
       35
<210> SEQ ID NO 69
<211> LENGTH: 40
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthetic region of Btk kinase domain
<400> SEOUENCE: 69
Ser His Glu Lys Leu Val Gln Leu Tyr Gly Val Cys Thr Lys Gln Arg
                                   10
Pro Ile Phe Ile Ile Thr Glu Tyr Met Ala Asn Gly Cys Leu Leu Asn
Tyr Leu Arg Glu Met Arg His Arg
<210> SEQ ID NO 70
<211> LENGTH: 42
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthetic region of Csk kinase domain
<400> SEQUENCE: 70
Arg His Ser Asn Leu Val Gln Leu Leu Gly Val Ile Val Glu Glu Lys
                        10
Gly Gly Leu Tyr Ile Val Thr Glu Tyr Met Ala Lys Gly Ser Leu Val
                               25
Asp Tyr Leu Arg Ser Arg Gly Arg Ser Val
       35
```

```
<211> LENGTH: 41
<212> TYPE: PRT
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthetic region of PDGFR kinase domain
<400> SEQUENCE: 71
Pro His Leu Asn Val Val Asn Leu Leu Gly Ala Cys Thr Lys Gly Gly
Pro Ile Tyr Ile Ile Thr Glu Tyr Cys Arg Tyr Gly Asp Leu Val Asp
Tyr Leu His Arg Asn Lys His Thr Phe
<210> SEQ ID NO 72
<211> LENGTH: 41
<212> TYPE: PRT
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthetic region of p38 kinase domain
<400> SEQUENCE: 72
Gly Leu Leu Asp Val Phe Thr Pro Ala Arg Ser Leu Glu Glu Phe Asn
Asp Val Val Leu Val Thr His Leu Met Gly Ala Asp Leu Asn Asn Ile
           20
Val Lys Cys Gln Lys Leu Thr Asp Asp
<210> SEQ ID NO 73
<211> LENGTH: 39
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthetic region of ZAP-70 kinase domain
<400> SEQUENCE: 73
Asp Asn Pro Tyr Ile Val Arg Leu Ile Gly Val Cys Gln Ala Glu Ala
Leu Met Leu Val Met Glu Met Ala Gly Gly Gly Pro Leu His Lys Phe
           20
                                25
Leu Val Gly Lys Arg Glu Glu
<210> SEQ ID NO 74
<211> LENGTH: 42
<212> TYPE: PRT
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthetic region of JAK2 kinase domain
<400> SEQUENCE: 74
Gln His Asp Asn Ile Val Lys Tyr Lys Gly Val Cys Tyr Ser Ala Gly
                                   10
Arg Arg Asn Leu Arg Leu Ile Met Glu Tyr Leu Pro Tyr Gly Ser Leu
Arg Asp Tyr Leu Gln Lys His Lys Glu Arg
<210> SEQ ID NO 75
<211> LENGTH: 39
<212> TYPE: PRT
<213 > ORGANISM: Artificial sequence
```

```
<220> FEATURE:
<223> OTHER INFORMATION: synthetic region of PKA kinase domain
<400> SEQUENCE: 75
Asn Phe Pro Phe Leu Val Lys Leu Glu Phe Ser Phe Lys Asp Asn Ser
Asn Leu Tyr Met Val Met Glu Tyr Val Pro Gly Gly Glu Met Phe Ser
          20
                               25
His Leu Arg Arg Ile Gly Arg
      35
<210> SEQ ID NO 76
<211> LENGTH: 39
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthetic region of CamK II kinase domain
<400> SEQUENCE: 76
Lys His Pro Asn Ile Val Arg Leu His Asp Ser Ile Ser Glu Glu Gly
His His Tyr Leu Ile Phe Asp Leu Val Thr Gly Gly Glu Leu Phe Glu
          20
                              25
Asp Ile Val Ala Arg Glu Tyr
       35
<210> SEQ ID NO 77
<211> LENGTH: 40
<212> TYPE: PRT
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthetic region of Cdk2 kinase domain
<400> SEOUENCE: 77
Asn His Pro Asn Ile Val Lys Leu Leu Asp Val Ile His Thr Glu Asn
              5
Lys Leu Tyr Leu Val Phe Glu Phe Leu His Gln Asp Leu Lys Lys Phe
Met Asp Ala Ser Ala Leu Thr Gly
      35
<210> SEQ ID NO 78
<211> LENGTH: 6
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthetic N-terminal His-6 tag
<400> SEQUENCE: 78
His His His His His
1 5
<210> SEQ ID NO 79
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthetic spacer sequence
```

-continued

20

25

What is claimed is:

1. A compound having the formula:

$$(R^{1}-L^{1})\underset{a}{\overset{N}{\underset{\parallel}{\bigcup}}} N$$

$$X$$

$$L^{2}$$

$$R^{2}$$

$$R^{2}$$

$$(I)$$

wherein:

X is = N - ;

Ring A is phenyl;

L¹ is a bond;

 L^2 is a bond;

$$L^{3}$$
 is — $C(O)$ —, — $S(O)_{2}$ —, or — $NHS(O)_{2}$ —;

L⁴ is unsubstituted C₁-C₅ alkylene;

R¹ is hydrogen or —NH₂;

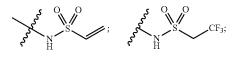
 $\ensuremath{R^2}$ is substituted or unsubstituted alkyl or substituted or unsubstituted cycloalkyl;

R³ is substituted or unsubstituted alkyl;

a is 1;

b is 1;

and


the salts and isomers thereof.

2. The compound of claim 1, wherein

$$L^3$$
 is $-C(O)$, $-S(O)_2$, or $-NHS(O)_2$; and

R³ is unsubstituted alkyl or alkyl substituted with chloro, fluoro, methyl, difluoromethyl, or trifluoromethyl.

- **3**. The compound of claim **2**, wherein R³ is ethenyl, ethyl, 2,2,2-trichloroethyl, 2,2-dichloroethyl, 2-chloroethyl, 2,2,2-trifluoroethyl, 2,2-difluoroethyl, or 2-fluoroethyl, propyl, isopropyl, 1-propenyl, or 2-propenyl.
 - 4. The compound of claim 3, wherein $-L^3-R^3$ is:

-continued -continued $CF_{2}H$; $CF_{2}H$;

270

5. The compound of claim 1, wherein,

 L^1 is a bond; and

R¹ is hydrogen.

6. The compound of claim 1, wherein

 L^1 is a bond; and

 R^1 is NH_2 .

60

7. The compound of claim 1, wherein

 L^2 is a bond; and

R² is methyl, ethyl, propyl, isopropyl, butyl, tert-butyl, pentyl, cyclopentyl, hexyl, or cyclohexyl.

8. The compound of claim **7**, wherein R^2 is isopropyl or cyclopentyl.

9. The compound of claim **8**, wherein R^2 is isopropyl.

10. The compound of claim 8, wherein R^2 is cyclopentyl.

271
11. A compound, having the formula:

$$NH_2$$
 NH_2
 NH_2

12. A pharmaceutical composition comprising a com-40 pound of claim 1 and a pharmaceutically acceptable excipient.

* * * * *